Home
Class 12
MATHS
Prove that the greatest value of .^(2n)C...

Prove that the greatest value of `.^(2n)C_(r)(0 le r le 2n)` is `.^(2n)C_(n)` (for `1 le r le n)`.

Text Solution

Verified by Experts

We have, `(.^(2n)C_(r))/(.^(2n)C_(r-1))=(2n-r+1)/(r)" "[because(.^(n)C_(r))/(.^(n)C_(r-1))=(n-r+1)/(r)]`
`=(2(n-r)+(r+1))/(r)=(1+2(n-r)+1)/(r)gt1`
`implies(.^(2n)C_(r))/(.^(2n)C_(r-1))gt1" "for" "1lerlen]`
`therefore.^(2n)C_(r-1)lt .^(2n)C_(r)`
On putting `r=1,2,3, . .,n`,
then `.^(2n)C_(0) lt .^(2n)C_(1), .^(2n)C_(2) lt .^(2n)C_(3) lt . . . lt .^(2n)C_(n-1) lt .^(2n)C_(n)`
On combining all inequalities, we get
`implies.^(2n)C_(0) lt .^(2n)C_(1) lt .^(2n)C_(2) lt .^(2n)C_(3) lt . . . lt .^(2n)C_(n-1) lt .^(2n)C_(n)`
but `.^(2n)C_(r)=.^(2n)C_(2n-r)`, it follows that
`.^(2n)C_(2n) lt .^(2n)C_(2n-1) lt .^(2n)C_(2n-2) lt .^(2n)C_(2n-3) lt . . . lt .^(2n)C_(n+1) lt .^(2n)C_(n)`
Hence, the greatest value of `.^(2n)C_(r)` is `.^(2n)C_(n)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .

if .^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10 , then r is equal to

Determine the average value of y=2x+3 in the interval 0 le x le 1 .

Determine the average value of y=2x+3 in the interval 0 le x le 1 .

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

If .^(2n)C_(3):^(n)C_(2)=44:3 , for which of the following value of r , the value of .^(n)C_(r) will be 15.

If .^(2n)C_(3):^(n)C_(3)=11:1 , find the value of n.

Determine n if ""^(2n)C_(3):""^(n)C_(3)=12:1 .