Home
Class 12
MATHS
Find the number of positive unequal inte...

Find the number of positive unequal integral solutions of the equation x+y+z+w=20.

Text Solution

Verified by Experts

We have, `x+y+z+w=20` . . (i)
Assume `x lt y lt z lt w.` here, x,y,z,w`ge1`
Now, let `x=x_(1),y-x=x_(2),z-y=x_(3) and w-z=x_(4)`
`thereforex=x_(1),y=x_(1)+x_(2),z=x_(1)+x_(2)+x_(3)` and
`w=x_(1)+x_(2)+x_(3)+x_(4)`
from eq. (i), `4x_(1)+3x_(2)+2x_(3)+x_(4)=20`
then, `x_(1),x_(2),x_(3),x_(4)ge1`.
`because4x_(1)+3x_(2)+2x_(3)+x_(4)=20` . .. (ii)
`therefore`Number of positive integral solution of Eq. (ii)
=Coefficient of `x^(20-10)` in
`(1-x^(4))^(-1)(1-x^(3))^(-1)(1-x^(2))^(-1)(1-x)^(-1)`
=Coefficient of `x^(10)` in
`(1-x^(4))^(-1)(1-x^(3))^(-1)(1-x^(2))^(-1)(1-x)^(-1)`
=Coefficient of `x^(10)` in `(1+x^(4)+x^(8)+x^(12)+ . ..)xx(1+x^(3)+x^(6)+x^(9)+x^(12)+ . .. )xx(1+x^(2)+x^(4)+x^(6)+x^(8)+x^(10)+ . ..)xx(1+x+x^(2)+x^(3)+x^(4)+x^(5)+x^(6)+x^(7)+x^(8)+x^(9)+x^(10)+ . ..)`
=Coefficient of `x^(10)` in
=Coefficient of `x^(10)` in
`(1+x^(3)+x^(6)+x^(9)+x^(4)+x^(7)+x^(10)+x^(8))xx(1+x^(2)+x^(4)+x^(6)+x^(8)+x^(10))(1+x+x^(2)+x^(3)+x^(4)+x^(5)+x^(6)+x^(7)+x^(8)+x^(9)+x^(10))` [neglecting higher powers]
=Coefficient of `x^(10)` in
`(1+x^(2)+x^(4)+x^(6)+x^(8)+x^(10)+x^(3)+x^(5)+x^(7)+x^(9)+x^(6)+x^(8)+x^(10)+x^(9)+x^(4)+x^(6)+x^(8)+x^(10)+x^(7)+x^(8)+x^(10)+x^(8)+x^(10))(1+x+x^(2)+x^(3)+x^(4)+x^(5)+x^(6)+x^(7)+x^(8)+x^(9)+x^(10))` [neglecting higher power]
`=1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1=23`
But x,y,z and w can be arranged in `.^(4)P_(4)=4!=24`
Hence, required number of sols `=(23)(24)=552`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of positive integral solution of the equation tan^(-1)x+cos^(-1)y/(sqrt(1+y^2))=sin^(-1)3/(sqrt(10))

Find the numbers of non-zero integral solutions of the equation |1-i|^(x) =2^(x)

Number of non-negative integral solutions of the equation a+b+c=6 is

The number of positive integral solutions of the equation |(x^3+1,x^2y,x^2z),(xy^2,y^3+1,y^2z),(xz^2,z^2y,z^3+1)|=11 is

The number of positive integral solutions of x^4-y^4=3789108 is

Find the total number of positive integral solutions for (x ,y ,z) such that x y z=24. Also find out the total number of integral solutions.

The number of non negative integral solutions of 3x+y+z=24 is

Consider the equation x+y-[x][y]=0, where [*] is the greatest integer function. The number of integral solutions to the equation is

Find the number of non-negative integral solutions of x_1+x_2+x_3+4x_4=20.