Home
Class 12
MATHS
Find the sum of the series (1^(2)+1)1!...

Find the sum of the series
`(1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n!`.

Text Solution

Verified by Experts

Let `S_(n)=(1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n!`
`therefore` nth term `T_(n)=(n^(2)+1)n!`
`={(n+1)(n+2)-3(n+1)+2}n!`
`T_(n)=(n+2)!-3(n+1)!+2n!`
Putting `n=1,2,3,4, . .,n`
then `T_(1)=3!-3*2!+2*1!`
`T_(2)=4!-3*3!+2*2!`
`T_(3)+%!-3*4!+2*3!`
`T_(4)=6!-3*5!+2*4!`
. . . . . . .
. . . . . . .
`T_(n-1)=(n+1)!-3n!+2(n-1)!`
`T_(n)=(n+2)!-3(n+1)!+2n!`
`therefore S_(n)=T_(1)+T_(2)+T_(3)+ . .. +T_(n)`
`=(n+2)!-2(n+1)!` [the rest cancel out]
`=(n+2)(n+1)!-2(n+1)!`
`=(n+1)!(N=2-2)`
`=n(n+1)!`
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Find the sum of the series : (tan^- 1)1/3+(tan^- 1)2/9+....+(tan^- 1)(2^(n-1))/(1+2^(2n-1))+...... oo

Find the sum to n terms of each of the series in 3 × 1^(2) + 5 × 2^(2) + 7 × 3^(2) +.........

Find the sum of the series 1*n+2*(n-1)+3*(n-2)+4*(n-3)+....(n−1).2+n.1"

Find the sum to n terms of each of the series in 1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + ...

Sum of the n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(3))+"......." is

If |x|gt1 ,then sum of the series (1)/(1+x)+(2)/(1+x^(2))+(2^(2))/(1+x^(4))+(2^(3))/(1+x^(8))+"......"" upto n terms "oo is (1)/(x-lambda) ,then the value of lambda is

Find the sum of n terms of each of the following 1^(2) + ((1^(2) + 2^(2))/(2)) + ((1^(2) + 2^(2) + 3^(2))/(3)) + …..

Statement 1 The sum of first n terms of the series 1^(2)-2^(2)+3^(2)-4^(2)_5^(2)-"……" can be =+-(n(n+1))/(2) . Statement 2 Sum of first n narural numbers is (n(n+1))/(2)

Find the sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))