Home
Class 12
MATHS
The number of proper divisors of 2^(p)*6...

The number of proper divisors of `2^(p)*6^(q)*21^(r),AA p,q,r in N`, is

A

(p+q+1)(q+r+1)(r+1)

B

(p+q+1)(q+r+1)(r+1)-2

C

(p+q)(q+r)r-2

D

(p+q)(q+r)r

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of odd proper divisors of 3^(p)*6^(q)*15^(r),AA p,q,r, in N , is

Statement-1: The number of divisors of 10! Is 280. Statement-2: 10!= 2^(p)*3^(q)*5^(r)*7^(s) , where p,q,r,s in N.

Given that the divisors of n=3^(p)*5^(q)*7^(r) are of of the form 4lamda+1,lamdage0 . Then,

Let p=2520, x=number of divisors of p which are multiple of 6, y=number of divisors of p which are multiple of 9, then

The negation of p^^(q implies ~r) is …….

lf r, s, t are prime numbers and p, q are the positive integers such that their LCM of p,q is r^2 t^4 s^2, then the numbers of ordered pair of (p, q) is

If n(A) = p and n (B) = q then numbers of non void relations from A to B are (2^(p+q)-1) .

Find r if ""^(5)P_(r)=2""^(6)P_(r-1)

if the roots of the equation 1/ (x+p) + 1/ (x+q) = 1/r are equal in magnitude but opposite in sign, show that p+q = 2r & that the product of roots is equal to (-1/2)(p^2+q^2) .

There are two sets A and B each of which consists of three numbers in GP whose product is 64 and R and r are the common ratios sich that R=r+2 . If (p)/(q)=(3)/(2) , where p and q are sum of numbers taken two at a time respectively in the two sets. The value of r^(R)+R^(r) is