Home
Class 12
MATHS
If 102!=2^(alpha)*3^(beta)*5^(gamma)*7^(...

If `102!=2^(alpha)*3^(beta)*5^(gamma)*7^(delta)`…, then

A

`alpha=98`

B

`beta=2gamma+1`

C

`alpha=2beta`

D

`2gamma=3delta`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`becauseE_(2)(102!)=98,E_(3)(102!)=49`,
`E_(5)(102!)=24 and E_(7)(102!)=16`
`therefore alpha=98,beta=49,gamma=24 and delta=16`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 15! =2^oo* 3^beta*5^gamma*7^delta*11^theta * 13^phi , then the value of oo-beta+gamma-delta+theta-phi , is

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+r x+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in lterms of p ,q ,r ,a n dsdot Deduce the condition that the equation has a common root.

If cos^(-1)alpha+cos^(-1)beta+cos^(-1)gamma=3pi , then alpha(beta+gamma)+beta(gamma+alpha)+gamma(alpha+beta) equals to ______

If alpha, beta, gamma, delta are the roots of the equation x^(4)+Ax^(3)+Bx^(2)+Cx+D=0 such that alpha beta= gamma delta=k and A,B,C,D are the roots of x^(4)-2x^(3)+4x^(2)+6x-21=0 such that A+B=0 The value of (alpha+beta)(gamma+delta) is terms of B and k is

If vec(alpha), vec(beta),vec(gamma) are three non-collinear unit vectors such that vec(alpha)+2vec(beta)+3vec(gamma) is collinear with vec(beta)+vec(y) and vec(alpha)+2vec(beta) is collinear with vec(beta)-vec(gamma) , then 2vec(alpha).vec(beta)+6vec(alpha).vec(gamma) +3vec(beta).vec(gamma) equal to

Let alpha,beta "and " gamma are three distinct roots of |{:(x-1,-6,2),(-6,x-2,-4),(2,-4,x-6):}| =0 the value of ((1)/(alpha)+(1)/(beta)+(1)/(gamma))^(-1) is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 . If a = alpha^(2)+beta^(2)+gamma^(2),b= alphabeta+betagamma+gammaalpha the value of |{:(a,b,b),(b,a,b),(b,b,a):}| is

The four points A(alpha, 0), B(beta, 0), C(gamma, 0) and D(delta, 0) are such that alpha, beta are the roots of equation ax^(2)+2hx + b=0 and gamma,delta are root of equationax^(2)+2h'x + b'=0 . Show that the sum of the ratios in which C and D divide AB is zero, if ab' + a' b = 2hh' .

Suppose alpha, beta are roots of ax^(2)+bx+c=0 and gamma, delta are roots of Ax^(2)+Bx+C=0 . If alpha,beta,gamma,delta are in AP, then common difference of AP is

Suppose alpha, beta are roots of ax^(2)+bx+c=0 and gamma, delta are roots of Ax^(2)+Bx+C=0 . If alpha,beta,gamma,delta are in GP, then common ratio of GP is