Home
Class 12
MATHS
""^(n)C(n-r)+3.""^(n)C(n-r+1)+3.""^(n)C(...

`""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)`

Text Solution

Verified by Experts

The correct Answer is:
`x=n+3`

We have, `.^(n)C_(n-r)+3^(n)C_(n-r+1)+3^(n)C_(n-r+2)+.^(n)C_(n-r+3)=.^(n)C_(r)`
`hArr (.^(n)C_(n-r)+.^(n)C_(n-r+1))+2(.^(n)C_(n-r+1)+.^(n)C_(n-r+2))+(.^(n)C_(n-r+2)+.^(n)C_(n-r+3))=.^(x)C_(r)`
`hArr.^(n+1)C_(n-r+1)+2^(2N=1)C_(n-r+2)+.^(n+1)C_(n-r+3)=.^(x)C_(r)`
`hArr(.^(n+1)C_(n-r+1)+.^(n+1)C_(n-r+2))+(.^(n+1)C_(n-r+2)+.^(n+1)C_(n-r+3))=.^(x)C_(r)`
`hArr.^(n+2)C_(n-r+2)+.^(n+2)C_(n-r+3)=.^(x)C_(r)`
`hArr .^(n+3)C_(n-r+3)=.^(x)C_(r)`
`hArr .^(n+r)C_(r)+.^(x)C_(r)" "[because .^(n)C_(r)=.^(n)C_(n-r)]`
Hence, `x=n+3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .

If ""^(n)C_(9)=""^(n)C_(8) , find ""^(n)C_(17) .

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

Determine n if ""^(2n)C_(3):""^(n)C_(3)=11:1

If .^(n)C_(9)=.^(n)C_(7) , find n.

Determine n if ""^(2n)C_(3):""^(n)C_(3)=12:1 .

Prove that , ""^nP_r = ""^((n-1))Pr + r. ""^(n-1)P_((r-1))

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .