Home
Class 12
MATHS
Prove that .^(n-1)C(3)+.^(n-1)C(4) gt .^...

Prove that `.^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3)` if `n gt 7`.

Text Solution

Verified by Experts

We have, `.^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) " "[because.^(n)C_(r)+.^(n)C_(r-1)=.^(n+1)C_(r)]`
`hArr .^(n)C_(4)gt.^(n)C_(3)`
`hArr (n!)/(4!(n-4)!)gt(n!)/(3!(n-3)!)`
`hArr (1)/(4(n-4)!)gt(1)/((n-3)(n-4)!)" "[becausem!=m(m-1)!]`
`hArr n-3 gt 4 hArr n gt7`
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n)C_(9)=.^(n)C_(7) , find n.

If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .

If ""^(n)C_(9)=""^(n)C_(8) , find ""^(n)C_(17) .

Find the value of n such that (""^(n)P_(4))/(""^(n-1)P_(4))=(5)/(3), n gt 4

If .^(n)P_(3)+.^(n)C_(n-2)=14n , the value of n is

If .^(20)C_(n+1)=.^(n)C_(16) , the value of n is

Prove that , (1)/(n+1) + (1)/(n+2) + ………….+ (1)/(2n) gt 13/24 for all natural numbers n > 1

Prove that, 1^2 + 2^2 + …..+ n^2 gt (n^3)/(3) , n in N