Home
Class 12
MATHS
1^(3)+2^(3)+3^(3)+. . .+n^(3)=((n(n+1))/...

`1^(3)+2^(3)+3^(3)+. . .+n^(3)=((n(n+1))/(2))^(2)`.

Text Solution

Verified by Experts

Let `P(n):1^3+2^3+3^3+.....+n^3=[(n(n+1))/(2)]^2`......(i)
Step I For `n=1`, LHS of Eq.(i) `=^3=1` and RHS of Eq. (i). `[(1(1+1))/(2)]^2=1^2=1`
`therefore LHS=RHS`
Therefore ,P(1), is ture.
Step II Assume P(k) is true , then
`P(k):1^3+2^3+3^3+.....K^3=[(k(k+1))/(2)]^2`
Step III For `n=k+1`,
`P(k+1):1^3+2^3+3^3+......+^3(k+1)^3`
`=[((k+1)+(k+2))/(2)] ^2`
LHS `=1^3+2^3+3^3+.....+k^3+(k+1)^3=[(k(k+1))/(2)]^2+(k+1)^3` [by assumption step]
`=((k+1)^2)/(4)[k^2+4(k+1)]`
`=((k+1)^2(k^2+4k+4))/(4)`
`=((k+1)^2(k+2)^2)/(4)`
`=[(k+1(k+2))/(2)]^2=RHS`
Therefore , `P(k+1)` is true , Hence , by the principle of mathematical induction , P(n)is true for all `n epsi N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......

Prove that 1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

Show that, (1 xx 2^(2) + 2 xx 3^(2) + ….+ n xx (n+1)^(2))/(1^(2) xx 2 + 2^(2) xx 3 + ….+ n^(2) xx (n+1))= (3n+ 5)/(3n+ 1)

lim_(ntooo)(1^(2)+2^(2)+3^(2)+.....+n^(2))/(n^(3)) =........

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

Definite integration as the limit of a sum : lim_(ntooo)[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))(1+(3^(2))/(n^(2)))......(1+(n^(2))/(n^(2)))]^(1/n)=.......

For all n gt= 1 , prove that, 1^2 + 2^2 + 3^2 + 4^2 + …….+n^2 = (n(n+1)(2n+1))/(6)

Prove the following by using the principle of mathematical induction for all n in N (1)/(1.2.3) + (1)/(2.3.4) + (1)/(3.4.5) + ……+ (1)/(n(n+1)(n+2)) = (n(n+3))/(4(n+1)(n+2))