Home
Class 12
MATHS
Prove by mathematical induction that sum...

Prove by mathematical induction that `sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N`.

Text Solution

Verified by Experts

Let `P(n):sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1)`
Step I For n=1,
LHS of Eq. (i) `=sum_(r=0)^(1)r.^(1)C_(r)=0+1.^(1)C_(1)=1` and RHS of Eq. (i) `=1.2^(1-1)=2^(0)=1`
Therefore , P(1) is true .
Step II Assume that P(k) is true , then P(k) : `sum_(r=0)^(k)r.^(k)C_(r)=k.2^(k-1)`
Step III For `n=k+1`
`P(k+1):sum_(r=0)^(k+1)r.^(k+1)C_(r)=(k+1).2^(k)`
`therefore LHS =sum_(r=0)^(k+1)r.^(k+1)C_(r)=0+sum_(r=1)^(k+1)r.^(k+1)C_(r)`
`=sum_(r=1)^(k+1)r.^(k+1)C_(r)=sum_9r=1)^(k)r.^(k+1)C_(r)+(k+1).^(k+1)C_(k+1)`
`=sum_(r=1)^(k)r(.^(k)C_(r)+.^(k)C_(r-1))+(k+1)`
`=sum_(r=1)^(k)r.^(k)C_(r)+sum_(r=0)^(k)r.^(k)C_(r-1)+(k+1)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k+1)r.^(k)C_(r-1)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum _(r=0)^(k)(r+1).^(k)C_r)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k).^(k)C_(r)`
`=P(k)+P(k)+2^k` [by assumption step]
`=k.2^(k-1)+k.26(k-1)+2^(k)=2.k.2^k-1+2^k`
`=k.2^k+2^k=(k+1).2^k=RHS`
Therefore , `P(k+1)` is true. Hence , by the principle of mathematical induction `P(n)` is true for all `n in N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Using mathematical induction prove that (d)/(dx) (x^(n))= n x^(n-1) for all positive integers n.

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

Evaluate sum_(r=1)^(n)rxxr!

Let a_(0)=2,a_1=5 and for n ge 2, a_n=5a_(n-1)-6a_(n-2) , then prove by induction that a_(n)=2^(n)+3^(n), forall n ge 0 , n in N .

sum_(r=1)^n(2r+1)=...... .

Let f be a function from the set of positive integers to the set of real number such that f(1)=1 and sum_(r=1)^(n)rf(r)=n(n+1)f(n), forall n ge 2 the value of 2126 f(1063) is ………….. .

Prove each of the statements by the principle of mathematical induction : 1+5+9+……+(4n-3)= n(2n-1) for all natural numbers n .

Prove each of the statements by the principle of mathematical induction : 1+2+2^n + ….. + 2^n = 2^(n+1) - 1 for all natural numbers n .

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

By using the principle of mathematical induction , prove the follwing : P(n) : (2n + 7) lt (n+3)^2 , n in N