Home
Class 12
MATHS
Let u(1)=1,u2=2,u(3)=(7)/(2)and u(n+3)=3...

Let `u_(1)=1,u_2=2,u_(3)=(7)/(2)and u_(n+3)=3u_(n+2)-((3)/(2))u_(n+1)-u_(n)`. Use the principle of mathematical induction to show that `u_(n)=(1)/(3)[2^(n)+((1+sqrt(3))/(2))^n+((1-sqrt(3))/(2))^n]forall n ge 1`.

Text Solution

Verified by Experts

`because u_(n)=(1)/(3)[2^(n)+((1+sqrt(3))/(2))^n+((1-sqrt(3))/(2))^n]` ......(i)
Step I For `n=1, u_(1)=(1)/(3)[2^1+((1+sqrt(3))/(2))^1+((1-sqrt(3))/(2))^1]=(1)/(3)[2+1]=1`
Which is true for `n=` and for `n=2`,
`u_(2)=(1)/(3)[2^2+((1+sqrt(3))/(2))^2+((1-sqrt(3))/(2))^2]`
`=(1)/(3) [4+((4+2sqrt(3))/(4))+((4-2sqrt(3))/(4))]=(1)/(3)[6]=2`
which is true for `n=2`.
Therefore , the result is true for n`=1 and n=2`.
Step II Assume it is true for `n=k`, then it is also true for `n=k-1, k-2`
`therefore u_(k)=(1)/(3)[2^k+((1+sqrt(3))/(2))^k+((1-sqrt(3))/2)^k]`....(ii)
`u_(k-1)=(1)/(3)[2^(k=-1)+((1+sqrt(3))/(2))^(k-1)+((1-sqrt(3))/(2))^(k-1)]`.....(iii)
`u_(k-2)=(1)/(3)[2^(k-2)+((1+sqrt(3))/(2))^(k-2)+((1-sqrt(3))/(2))^(k-2)]`.....(iv)
Step III Given that , `u_(n+3)=3u_(n+2)-((3)/(2))u_(m+1)-u_(n)`
Replace n by `k -2`
Then , `u_(k+1)=3u_(k)-(3)/(2)u_(k-1)-u_(k-2)`
`=(1)/(3)[3.2^k+3((1+sqrt(3))/(2))^k+3((1-sqrt(3))/(2))^k]`
`+(1)/(3)[-(3)/(2).2^(k-1)-(3)/(2)((1+sqrt(3))/(2))^(k-1)-(3)/(2)((1-sqrt(3))/(2))^(k-1)]`
`+(1)/(3)[-2^(k-2)-((1+sqrt(3))/(2))^(k-2)-((1-sqrt(3))/(2))^(k-2)]`
`=(1)/(3)[3.2^k .3.2^(k-2)-2^(k-2)+((1+sqrt(3))/(2))^k-(3)/(2)((1+sqrt(3))/(2))^(k-1)-((1+sqrt(3))/(2))^(k-2)+3((1-sqrt(3))/(2))^k-(3)/(2)((1-sqrt(3))/(2))^(k-1)-((1-sqrt(3))/(2))^(k-2)]`
`=(1)/(2)[2^(k-2)(3.4-3-1)+((1+sqrt(3))/(2))^(k-2) [3((1+sqrt(3))/(2))^2-(3)/(2)((1+sqrt(3))/(2))-1]+((1-sqrt(3))/(2))^(k-2)[3((1-sqrt(3))/(2))^2-(3)/(2)((1-sqrt(3))/(2))-1]]`
`=(1)/(3)[2^(k-2).8+((1+sqrt(3))/(2))^(k-2)[(3(1+sqrt(3))^2-3(1+sqrt(3))-4)/(4)]+((1-sqrt(3))/(2))^(k-2)[(3(1-sqrt(3))^2-3(1-sqrt(3))-4)/(4)]]`
`=(1)/(3)[2^(k+1)+((1+sqrt(3))/(2))^(k-2)[(10+6sqrt(3))/(8)]+((1-sqrt(3))/(2))^(k-2)[(10-6sqrt(3))/(8)]]`
`=(1)/(3) [2^(k+1)+((1+sqrt(3))/(2))^(k-2)((1+sqrt(3))/(2))^3+((1-sqrt(3))/(2))^(k-2)((1-sqrt(3))/(2))^3]`
`=(1)/(3)[2^(k+1)+((1+sqrt(3))/(2))^(k+1)+((1-sqrt(3))/(2))^(k+1)]`
This shows that the result is true for `n=k+1`. Hence , by the principle of mathematical induction the result is true for all `n in N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Use the principle of mathematical induction to show that 5^(2n+1)+3^(n+2).2^(n-1) divisible by 19 for all natural numbers n.

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Using mathematical induction , show that (1-(1)/(2^2))(1-(2)/(3^2))(1-(1)/(4^2)).....(1-(1)/((n+1)^2))=(n+2)/(2(n+1)), forall n in N .

By using the principle of mathematical induction , prove the follwing : P(n) : (2n + 7) lt (n+3)^2 , n in N

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

Prove the following by using the principle of mathematical induction for all n in N (2n+7) lt (n+3)^2

By using the principle of mathematical induction , prove the follwing : P(n) : 1/2 + 1/4 + 1/8 + ……..+ (1)/(2^n) = 1 - (1)/(2^n) , n in N

Prove the following by using the principle of mathematical induction for all n in N 1+3+3^2 +…………+3^(n-1) = (3^n -1)/(2)

If a_(1)=1, a_(2)=5 and a_(n+2)=5a_(n+1)-6a_(n), n ge 1 . Show by using mathematical induction that a_(n)=3^(n)-2^(n)

By using the principle of mathematical induction , prove the follwing : P(n) + 1+3+5+……….+(2n-1) = n^2 , n in N