Home
Class 12
MATHS
prove that 7 + 77 + 777 +...... + 777.....

prove that `7 + 77 + 777 +...... + 777........._(n-digits) 7 = 7/81 (10^(n+1) - 9n - 10)` for all `n in N`

Text Solution

Verified by Experts

The correct Answer is:
C

`because ubrace(777......7)_("n digits")=7ubrace((111......1))_("n digits")`
`=7(1+10+10^2+....+10^(n-1))`
`=7+7xx10+7xx10^2+......+7xx10^(n-1)`
`ne 7+7xx10+7xx10^(2)+....+7xx10^n)`
`therefore` Statement -2 is false .
Now ,let `P(n):7+77+777+.....+ubrace(777......7)_("n digits")=(7)/(81)(10^(n+1)-9n-10)`
Step I For n=1,
LHS =7 and RHS `=(7)/(81)(10^2-9-10)=7`
`therefore LHS=RHS`
which is true for `n=1`.
Step II Assume P(n) is true for n=k, then
`P(k):7+77+777+.....+ubrace(777......7)_("k digits")=(7)/(81)(10^(k+1)-9k-10)`
Step III For `n=k+1`.
`P(k+1):7+77+777+....+ubrace(777......7)_("n digits")+ubrace(777.7)_((k+1)digits)=`
`(7)/(81)[10^(k+2)-9(k+1)-10]`
LHS =7+77+777+.....+ubrace(777......7)_("k digits")+ubrace(777......7)_((k+1)digits)`
`=(7)/(81)(10^(k+1)-9k-10)+7(1+10+10^2+......+10^k)`
`=(7)/(81)(10^(k+1)-9k-10)+(7(1k^(k+1)-1))/(10-1)`
`=(7)/(81)(10^(k+1)-9k-10+9.10^(k+1)-9)`
`=(7)/(81)[10^(k+1)(1+9)-9(k+1-10]`
`=(7)/(81)[10^(k+2-9(k+1-10]`
`=RHS`
Therefore , `P(k+1)` is true . Hence , by mathematical induction `P(n)` is true for all natural numbers .
Hence , Statement-1is true and Statement -2 is false .
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (n!) (n + 2) = [n! + (n + 1)!]

10^n+3(4^(n+2))+5 is divisible by (n in N)

By using the principle of mathematical induction , prove the follwing : (1)/(1.4) + (1)/(4.7) + (1)/(7.10) + ………..+ (1)/((3n - 2)(3n+1)) = (n)/(3n + 1) , n in N

Prove that 2^n gt n for all positive integers n.

Show that (n^5)/(5) + (n^3)/(3) + (7n)/(15) is a natural number for all n in N

Prove that 1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+6n-1))/3

Prove each of the statements by the principle of mathematical induction : 1+2+2^n + ….. + 2^n = 2^(n+1) - 1 for all natural numbers n .

Prove 1.4.7+2.5.8+3.6.9+....... upto n terms =(n)/(4)(n+1)(n+6)(n+7)

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

If A and B are square matrices of the same order such that AB=Ba , then prove by inducation that AB^(n)=B^(n)A . Further , prove that (AB)^(n)=A^(n)B^(n) for all n in N .