Home
Class 12
MATHS
Using the principle of mathematical indu...

Using the principle of mathematical induction to show that
`tan^(−1)(x/(1+1.2.x^2))+tan^(−1)(x/(1+2.3.x^2))+.....+tan^(−1)(x/(1+n(n+1)x^2)) =` `tan^(-1)(n+1)x-tan^(-1)x , forall x in N`.

Text Solution

Verified by Experts

Let `P(n):tan^(-1)((x)/(1+1.2.x^2))+tan^(-1)((x)/(1+2.3.x^2))+.....+tan^(-1)((x)/(1+n(n+1)x^2))` .....(i)
`=tan^(-1)(n+1)x-tan^(-1)x`
Step I For `n=1`.
LHS of Eq. (i) `=tan^(-1)((x)/(1+1.2.x^2))`
`=tan^(-1)((2x-x)/(1+2x.x))=tan^(-1)2x-tan^(-1)x`
=RHS of Eq.(i)
Therefore , P(1) is true.
Step II Assume it is true for `n=k`.
`P(k):tan^(-1)((x)/(1+1.2x^2))+tan^(-1)((x)/(1+2.3x^2))+......+tan^(-1)((x)/([1+k(k+1)x^2]))`
`=tan^(-1)(k+1)x-tan^(-1)x`
Step III For `n=k+1`.
`P(k+1):tan^(-1)((x)/(1+1.2.x^2))+tan^(-1)((x)/(1+2.3.x^2))+.....+tan^(-1)((x)/(1+k(k+1)x^2))+......+tan^(-1)((x)/(1+(k=1)(k+2)x^2))`
`=tan^(-1)(k+2)x-tan^(-1)x`
`therefore LHS =tan^(-1)((x)/(1+1.2.x^2))`
`+tan^(-1)((x)/(1+2.3.x^2))+....+tan^(-1)((x)/(1+k(k+1)x^2))+tan^(-1)((x)/(1+(k+1)(k+2)x^2))`
`tan^(-1)(k+1)x-tan^(-1)x+tan^(-1)((x)/(1+(k+1)(k+2)x^2))`
`=tan^(-1)(k+1)x-tan^(-1)x+tan^(-1)(((k+2)x-(k+1)x)/(1+(k+2)x(k+1)x))`
`=tan^(-1)(k+1)x-tan^(-1)x+tan^(-1)(k+2)x-tan^(-1)(k+1)x=tan^(-1)(k+2)x-tan^(-1)x=RHS`
This shows that the result is true for `n=k+1`. Hence , by the principle of mathematical induction , the result is true for all the `n in N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

By using the principle of mathematical induction , prove the follwing : P(n) :( 1+x)^n gt=1 + nx, x gt (-1) , n in N

Solve the equation tan^(-1) ((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Find the derivative of tan^(-1)((2x)/(1-x^2))wdotrdottsin^(-1)((2x)/(1+x^2) )

Integrate the following functions : tan^(-1)((2x)/(1-x^(2)))

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).

Prove that, tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/sqrt3

Solve the following equations : tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x

Solve for x : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x