Home
Class 12
MATHS
Prove by mathematical induction that (1)...

Prove by mathematical induction that `(1)/(1+x)+(2)/(1+x^2)+(4)/(1+x^4)+.....+(2^n)/(1+x^(2^n))=(1)/(x-1)+(2^(n+1))/(1-x^(2^(n+1)))` where , `|x|ne 1 ` and n is non - negative integer.

Text Solution

Verified by Experts

Let`P(n):(1)/(1+x)+(2)/(1+x^2)+(4)/(1+x^4)+.....+(2^n)/(1+x^(2^(n)))`
`=(1)/(x-1)+(2^(n+1))/(1-x^(2^(n+1)))` .....(i)
Step I For `n=1`,
LHS of Eq. (i) =(1)/(1+x)+(2)/(1+x^2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 1/(x+1)+5/(x^2+1)+4/x^4+1)+…..+2^n/(x^2^n+1)= /(x-1)- 2^(n+1)/(x^2(n+1) -1)

Using mathematical induction , show that (1-(1)/(2^2))(1-(2)/(3^2))(1-(1)/(4^2)).....(1-(1)/((n+1)^2))=(n+2)/(2(n+1)), forall n in N .

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

Using mathematical induction prove that (d)/(dx) (x^(n))= n x^(n-1) for all positive integers n.

Find value of (x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3) .

int(e^(x)(1-nx^(n-1)-x^(2n)))/((1-x^(n)) sqrt(1-x^(2n)))d=....+c

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

By using the principle of mathematical induction , prove the follwing : 1 + (1)/(1+2) + (1)/(1+2+3) + …..+ (1)/(1+2+…..+n) = (2n)/(n+1) , n in N

By using the principle of mathematical induction , prove the follwing : (1)/(1.4) + (1)/(4.7) + (1)/(7.10) + ………..+ (1)/((3n - 2)(3n+1)) = (n)/(3n + 1) , n in N

Prove the following by using the principle of mathematical induction for all n in N 1/2 + 1/4 + 1/8+ ……..+ (1)/(2^n) = 1 - (1)/(2^n)