Home
Class 12
MATHS
Prove by induction that {prod(r=0)^(n)f(...

Prove by induction that `{prod_(r=0)^(n)f_(r)(x)}'=sum_(i=1)^(n){f_1(x)f_2(x)....f_(i)'(x)....f_(n)(x)}`,
where dash denotes derivative with respect to x.

Text Solution

Verified by Experts

Let `P(n):{prod_(r=0)^(n)f_(r)(x)}^(')=sum_(i=1)^(n){f_(1)(x)f_(2)(x).....f_(1)(x)....f_(n)(x)}`
Step I For ` n =1` ,
LHS of Eq. (i) `={prod_(r=1)^(1)f_(r)f(x)}^(')={f_(1)(x)}^(')=f_(1)^(')(x)`
RHS of Eq. (i) `=sum_(i=1)^(1){f_1(x)f_(2)(x)...f_(1)^(')(x)... f_(1)(x)}`
which is true for `n=1`.
Step II Assume it is true for `n=k` , then
`P(k):{prod_(r=1)^(k)f_(r)(x)}^(')=sum_(i=1)^(k){f_1(x)f_2(x).....f_1(x)....f_k(x)}`
Step III For `n=k+1`,
LHS`={prod_(r=1)^((k+1))f_r(x)}={prod_(r=1)^(k)f_r(x).f_(k+1)(x)}^(')`
`=prod_(r=1)^(k)f_r(x).f_(k+1)^(')(x)+f_(k+1)(x){prod_(r=1)^(k)f_r(x)}^'`
`= prod_(r=1)^(k)f_r(x).f_(k+1)^(')(x)+f_(k+1)(x).sum_(i=1)^(k){f_1(x).f_2(x).....f_(k+1)^(')....f_(k)(x)}`
`={f_1(x)f_2(x)....f_k(x)}f_(k+1)^(')(x)+f_(k+1)(x) sum_(i=1)^(k){f_1(x)f_2(x)....f_(i) '(x).....f_(k)(x)}`
`= sum_(i=1)^(k+1){f_19x)f_2(x).....f_(i)'(x)....f_(k+1)(x)}=RHS`
This shows that the result is true for `n=k+1`. Hence , by the principle of mathematical induction , the result is true for all `n in N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(ax+b)/(a+bx)"then"f(x).f(x).f(1/x)=.... . (where x ne 0 )

f:N rarrN , f(x)=x+(-1)^(x-1) then f^(-1)(x)= .......

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

If f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(n)=sum_(r=1)^(2n-1)2f((r)/(2n)) . Find te value g(4)

If f(x)=(a-x^(n))^(1/n) , where a gt 0 and n in N , then fof (x) is equal to

If f'(x)=x^(2)+5 and f(0)=-1 then f(x)=...

If f(x)=(1-x)/(1+x)" then "f(x)+ f(1/x)=...... where (x)in R-{0,1}.

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of underset(x to -oo)(lim)f(x) is

A derivable function f : R^(+) rarr R satisfies the condition f(x) - f(y) ge log((x)/(y)) + x - y, AA x, y in R^(+) . If g denotes the derivative of f, then the value of the sum sum_(n=1)^(100) g((1)/(n)) is

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.