Home
Class 12
MATHS
1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6...

`1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6`

Text Solution

Verified by Experts

Let `P(n):1^2_2^2+3^2+....+n^2=((n+1)(2n+1))/(6)`
Step I For n=1 ,
LHS of Eq. (i) `=1^2=1`
RHS of Eq. (i) `=((1+1)(2xx1+1))/(6)`
`=(1.2.3)/(6)=1`
LHS = RHS
Therefore , P(1) is true .
Step II Let us assume that the result is true for `n=k`. Then , `P(k):1^2+2^2+3^2+......+k^2=(k(k+1)(2k+1))/(6)`
Step III For `n=k+1`, we have to prove that
`P(k+1):1^2+2^2+3^2+......+k^2+(k+1)^2`
`=((k+1)(k+2)(k+3))/(6)`
LHS =`1^2+2^2+3^2+....+k^2+(k+1)^2`
`=(k(k+1)(2k+1))/(6)+(k+1)^2`
`=(k(k+1)(2k+1))/(6)+(k+1)^2`
`=(k+1){(k(2k+1))/(6)+(k+1)}`
`=(k+1){(2k^2+7k+6)/(6)}`
`=(k+1){((k+2)(2k+3))/(6)}=((k+1)(k+2)(2k+3))/(6)= RHS `
This shows that the result is true for `n=k+1`. Therefore , by the principle of methematical induction ,the result is true for all `n in N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

For all n gt= 1 , prove that, 1^2 + 2^2 + 3^2 + 4^2 + …….+n^2 = (n(n+1)(2n+1))/(6)

By using the principle of mathematical induction , prove the follwing : P(n) : 1^2 + 2^2 + 3^2+…………+n^2 = n/6 (n+1) (2n+1), n in N

Prove the following by using the principle of mathematical induction for all n in N 1^2 +3 ^2 + 5^2 +………..+ (2n-1)^2 = (n(2n - 1)(2n+1))/(3)

Show that, (1 xx 2^(2) + 2 xx 3^(2) + ….+ n xx (n+1)^(2))/(1^(2) xx 2 + 2^(2) xx 3 + ….+ n^(2) xx (n+1))= (3n+ 5)/(3n+ 1)

Prove that, 1^2 + 2^2 + …..+ n^2 gt (n^3)/(3) , n in N

P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......

Prove the following by using the principle of mathematical induction for all n in N 1.2+2.2^2 + 3.2^3 + ……….+ n.2^n =(n-1) 2^(n+1) + 2

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

1^(3)+2^(3)+3^(3)+. . .+n^(3)=((n(n+1))/(2))^(2) .

Prove the following by using the principle of mathematical induction for all n in N 1 + 2 + 2^2 + …..+2^n = 2^(n+1) -1