Home
Class 12
MATHS
If f(x)=(a-x)/(a+x), the domain of f^(-1...

If `f(x)=(a-x)/(a+x)`, the domain of `f^(-1)(x)` contains

A

`(-oo,oo)`

B

`(-oo,-1)`

C

`(-1,oo)`

D

`(0,oo)`

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

Let `y=f(x)=(a-x)/(a+x)impliesay+xy=a-x`
`therefore x=(a(1-y))/((1+y))=f^(-1)(y)impliesf^(-1)(x)=(a(1-x))/((1+x))`
`therefore f^(-1)(x)` is not defined for x = - 1.
Domain of `f^(-1)(x)` belongs to `(-oo,-1)uu(-1,oo)`.
Now, for a = - 1, given function f(x) = - 1, which is constant.
Then, `f^(-1)(x)` is not defined.
`therefore ane-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) , then f(a x) in terms of f(x) is equal to

If f(x)= (x+1)/(x-1) then show that f[f(x)] = x .

f(x)=sqrt(x^(2)-abs(x)-2) . Find the domain of f(x).

If f(x)= (x-3)/(x + 1) then f[f {f(x)}] = …….

Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot then the (a) domain of f(x)i sR (b) domain of f(x)i s[-1,1] (c) range of f(x) is [-(2pi)/3,pi/3] (d) range of f(x)i sR

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x) .

If f(x)=(1-x)/(1+x)" then "f(x)+ f(1/x)=...... where (x)in R-{0,1}.

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If f(x)= (x-1)/(x+1) , Then show that f((1)/(x))= -f(x)

If f(x)=(x^(2)-x)/(x^(2)+2x) , then find the domain and range of f. Show that f is one-one. Also, find the function (d(f^(-1)(x)))/(dx) and its domain.