Home
Class 12
MATHS
If A={x:x^(2)-2x+2gt0}andB={x:x^(2)-4x+3...

If `A={x:x^(2)-2x+2gt0}andB={x:x^(2)-4x+3le0}`
A - B equals

A

`(-oo,oo)`

B

(1,3)

C

`(3,oo)`

D

`(-oo,1)uu(3,oo)`

Text Solution

Verified by Experts

The correct Answer is:
D

`A={x:x^(2)-2x+2gt0}={x:(x-1)^(2)+1gt0}=(-oo,oo)`
`B={x:x^(2)-4x+3le0}={x:(x-1)(x-3)le0}`
`={x:1lexle3}=[1,3]`
`A-B=(-oo,oo)-[1,3]=(-oo,1)uu(3,oo)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A={x:x^(2)-2x+2gt0}andB={x:x^(2)-4x+3le0} AnnB equals

If A={x:x^(2)-2x+2gt0}andB={x:x^(2)-4x+3le0} AuuB equals

x+y le 9. y gt x, x ge 0

If A=[{:(0,1,2),(2,-3,0),(1,-1,0):}]andf(x)=x^(3)+4x^(2)-x , then find f(A).

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

The area of the region bounded by {(x,y) : y^2 ge 2x and x^2 +y^2 le 4x , x ge 0 , y ge 0} is ….Sq. units.

If lim_(x->0) (x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0 then

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is