Home
Class 12
MATHS
If A ={ theta : 2cos^2 theta + sintheta ...

If `A ={ theta : 2cos^2 theta + sintheta <=2}` , and `B = {theta: pi/2<=theta<= 3pi/2}` , then the region for `(AnnB)` is

Text Solution

Verified by Experts

`because 2cos^(2)theta+sinthetale2`
`therefore 2(1-sin^(2)theta)+sinthetale2`
`implies 2sin^(2)theta-sinthetage0`
`implies sintheta(2sintheta-1)ge0`
`implies sintheta(sintheta-(1)/(2))ge0`
`therefore sinthetale0andsinthetage(1)/(2)`
Now, the values of `theta` which lie in teh interval `(pi)/(2)lethetale(3pi)/(2)[because B={theta:(pi)/(2)lethetale(3pi)/(2)}]`
So, `theta` satisfy `sin theta le 0` in the interval `(pi)/(2)lethetale(5pi)/(6)`.
`therefore AnnB={theta:pilethetale(3pi)/(2)}`
and `AnnB={theta:(pi)/(2)lethetale(5pi)/(6)}`
Hence, `AnnB={theta:(pi)/(2)lethetale(5pi)/(6)orpilethetale(3pi)/(2)}`
`={theta:thetain[(pi)/(2)(5pi)/(6)]uu[pi,(3pi)/(2)]}`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt theta lt (pi)/2 and 5 tan theta = 4 then (5 sin theta - 3 cos theta) / (sintheta +2 cos theta ) = 5/14

Find (dy)/(dx) : x=2 cos theta- cos^(2) theta and y=2 sin theta- sin 2theta Show that (dy)/(dx)= -1 " when " theta = (pi)/(2)

If x sin^(3)theta + y cos^(3)theta = sintheta costheta and x sin theta = y cos theta , prove that x^(2) + y^(2) = 1.

sin^(4) theta + cos ^(4) theta + 2sin^(2) theta cos ^(2) theta has value 1.

Find (dy)/(dx) : x=a sin^(2) theta cos theta, y= 2b cos^(2) theta (-sin theta)

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

Equation of the line passing through the point ( a cos^(3) theta , a sin^(3) theta ) and perpendicular to the line x sec theta + y cosec theta = a is x cos theta - y sin theta = cos 2 theta .

The value of theta , lying between theta =0 and theta=(pi)/(2) and satisfying the equation . |{:(1+ cos^(2 ) theta , sin^(2) theta , 4 sin 4 theta ),(cos^(2) theta , 1+sin^2 theta , 4 sin 4 theta ),(cos^(2) theta , sin^(2) theta , 1+ 4 sin 4 theta ):}|=0 , is

Let theta in (pi//4,pi//2), then Statement I (cos theta)^(sin theta ) lt ( cos theta )^(cos theta ) lt ( sin theta )^(cos theta ) Statement II The equation e^(sin theta )-e^(-sin theta )=4 ha a unique solution.