Home
Class 12
MATHS
If f(y) = (y)/(sqrt(1-y^(2))), g(y) = (y...

If `f(y) = (y)/(sqrt(1-y^(2))), g(y) = (y)/(sqrt(1+y^(2)))`, then (fog) y is equal to

A

`(y)/(sqrt(1-y^(2)))`

B

`(y)/(sqrt(1+y^(2)))`

C

y

D

`((1-y^(2)))/(sqrt(1-y^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(y)=(y)/(sqrt((1-y^(2)))),g(y)=(y)/(sqrt((1+y^(2))))`
and `(fog)y=f(g(y))=f((y)/(sqrt((1+y^(2)))))=((y)/(sqrt((1+y^(2)))))/(sqrt(1-(y^(2))/((1+y^(2)))))=((y)/(sqrt((1+y^(2)))))/((1)/(sqrt((1+y^(2)))))=y`
Promotional Banner

Similar Questions

Explore conceptually related problems

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

If y= sqrt(sin x + y) , then (dy)/(dx) is equal to

If x^(2)+y^(2)+z^(2)-2xyz=1 , then the value of (dx)/(sqrt(1-x^(2)))+(dy)/(sqrt(1-y^(2)))+(dz)/(sqrt(1-z^(2))) is equal to………..

If y=2^(3^(x)) , then y' equals

If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))) , then (dy)/(dx) is equal to

If sqrt(1-x^(2)) + sqrt(1 -y^(2))= a(x-y) , then prove that (dy)/(dx)= sqrt((1-y^(2))/(1-x^(2))) . (Where |x| le 1, |y| le 1 )

x dy - y dx = sqrt(x^(2) + y^(2)) dx

If x = sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x)

If x=sqrt(a^sin^((-1)t)), y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x