Home
Class 12
MATHS
Statement-1 If A = {x |g(x) = 0} and B =...

Statement-1 If A = {x |g(x) = 0} and B = {x| f(x) = 0}, then `A nn B` be a root of `{f(x)}^(2) + {g(x)}^(2)=0`
Statement-2 `x inAnnBimpliesx inAorx inB`.

A

Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1

B

Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1

C

Statement-1 is true, Statement-2 is false

D

Statement-1 is false, Statement-2 is true

Text Solution

Verified by Experts

The correct Answer is:
C

Let `alphain(AnnB)impliesalphainAandalphainB`
`implies g(alpha)=0`
`andf(alpha)=0`
`implies {f(alpha)}^(2)+{g(alpha)}^(2)=0`
`implies alpha" is a root of "{f(x)}^(2)+{g(x)}^(2)=0`
Hence, Statement-1 is true and Statement-2 is false.
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

If f'(x)=x^(2)+5 and f(0)=-1 then f(x)=...

If 2f (x)- 3f((1)/(x))= x^(2) (x ne 0) then f(2)= ……

f(x)= 3x^(2)-1 and g(x)= 3 + x . If f= g then the value of x is…….

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0 then find f(x).

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

f(x) = cot^(-1)x: R^(+) rarr (0,pi) and g(x) = 2x-x^(2): R rarrR then the range of f(g(x)) is ...........

Statement 1 The equation a^(x)+b^(x)+c^(x)-d^(x)=0 has only real root, if agtbgtcgtd . Statement 2 If f(x) is either strictly increasing or decreasing function, then f(x)=0 has only real root.