Home
Class 12
MATHS
If veca=hati+hatj+hatk, vecb=4hati+3hatj...

If `veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk` and `vecc=hati+alphahatj+betahatk`
are linearly dependent vectors and `|vecc|=sqrt(3)` then

A

`alpha=1,beta=-1`

B

`alpha=1,beta=+-1`

C

`alpha=1,beta=+-1'

D

`alpha=+-1,beta=1`

Text Solution

Verified by Experts

The correct Answer is:
D

The given vectors are linearly dependent, hence there exist scalars x,y and z not all zero, such that
`xa+yb+zc=0`
i.e., `x(hati+hatj+hatk)+y(4hati+3hatj+4hatk)+z(hati+alphahatj+betahatk)=0`
i.e., `(x+4y+z)hati+(x+3y+alphaz)hatj+(x+4y+betaz)hatk=0`
`impliesx+4y+z=0, x+3y+alphaz=0,x+4y+betaz=0`
For non-trivial solution `|(1,4,1),(1,3,alpha),(1,4,beta)|=0implies beta=1`
`|c|^(2)=3implies1+alpha^(2)+beta^(2)=3`
`impliesalpha^(2)=2-beta^(2)=2-1=1`
`thereforealpha=+-1`
Trick `|c|=sqrt(1+alpha^(2)+beta^(2))=sqrt(3)`
`implies alpha^(2)+beta^(2)=2`
`because` a,b and c are linearly dependent, hence `|(1,1,1),(4,3,4),(4,alpha,beta)|=0`
`impliesbeta=1`
`thereforealpha^(2)=1impliesalpha=+-1`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca = 2 hati - hatj + hatk , vecb = hati + hatj - 2 hatk, vecc= hati + 3 hatj- hatk, if veca is perpendicular to lamda vecb + vecc. then the value of lamda is ________.

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

Show that the vectors 2hati-3hatj+4hatk and -4hati+6hatj-8hatk are collinear.

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.

Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3hati+hatj+4hatk are so placed that the end point of one vector is the starting point of the next vector. Then the vectors are

The number of integral values of p for which (p+1) hati-3hatj+phatk, phati + (p+1)hatj-3hatk and -3hati+phatj+(p+1)hatk are linearly dependent vectors is q

if three vectors are veca=-3hati+2hatj-hatk, vecb=hati-3hatj+5hatk and vecc=2hati+hatj-4hatk then find a-b-c is

If veca=hati+hatj+hatk,vecb=2hatj-hatj+3hatkandvecc=hati-2hatj+hatk , find a unit vector parallel to the vector 2veca-vecb+3vecc .