Home
Class 12
MATHS
Let O, O' and G be the circumcentre, ort...

Let O, O' and G be the circumcentre, orthocentre and centroid of a `Delta ABC` and S be any point in the plane of the triangle.
Statement -1: `vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O)`
Statement -2: `vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)`

A

`OO'`

B

`2O'O`

C

`2O O'`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

`O'A=O'O=OA`
`O'B=O O'+OB`
`O'C=O'O+OC`
`impliesO' A+O'B + O'C=3O'O+OA+OB+OC`

Since, `OA+OB+OC=O O'=-O'O`
`therefore O'A+O'B+O'C=2O'O`
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-I : The angle between vectors vec(A)xxvec(B) and vec(B)xxvec(A) is pi radian. Statement-II : vec(B)xxvec(A)=-vec(A)xx vec(B)

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

If G is the centroid of Delta ABC and G' is the centroid of Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' =

Statement 1: In "Delta"A B C , vec A B+ vec A B+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b

If O is the circumcentre and O' the orthocenter of DeltaABC prove that (i) SA+SB+SC=3SG, where S is any point in the plane of DeltaABC . (ii) OA+OB+OC=OO' Where, AP is diameter of the circumcircle.

If vec(A) =2hat(i)-2hat(j) and vec(B)=2hat(k) then vec(A).vec(B) ……

If (vec(a)-vec(b)).(vec(a)+vec(b))=27 and |vec(a)|=2|vec(b)| the find |vec(a)| and |vec(b)| .

If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .

If A, B, C and D by any four points in space, prove that |vec(AB)xx vec(CD)+vec(BC)xx vec(AD)+vec(CA)xx vec(BD)|=4 (Area of triangle ABC)

The two vectors vec(A) and vec(B) are drawn from a common point and vec(C)=vec(A)+vec(B) then angle between vec(A) and vec(B) is