Home
Class 12
MATHS
In a regular hexagon ABCDEF, vec(AB)=a, ...

In a regular hexagon ABCDEF, `vec(AB)=a, vec(BC)=b and vec(CD) = c. Then, vec(AE) =`

Text Solution

Verified by Experts

The correct Answer is:
A

As in figure, `AB=a,BC=b`,
So, `AD=2b and ED=a`

Now, `AE+ED=AD`
`impliesAE=AD-ED=2b-a`
Promotional Banner

Similar Questions

Explore conceptually related problems

In a regular hexagon ABCDEF, vec(AE)

In a regular hexagon ABCDEF, vec(AB) +vec(AC)+vec(AD)+ vec(AE) + vec(AF)=k vec(AD) then k is equal to

In a quadrilateral ABCD, vec(AB)=vec(b),vec(AD)=vec(d) and vec(AC)=m vec(b)+p vec(d)(m+p ge1) . The area of the quadrilateral ABCD is ……………..

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

In a regular hexagon two vec(PQ)=vecA, vec(RP)=vecB . Express other vectors's in term of them :-

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

The vectors vec(a) and vec(b) are not perpendicular. The vectors vec( c ) and vec(d) are such that vec(b)xx vec( c )=vec(b)xx vec(d) and vec(a).vec(d)=0 then vec(d) = ……………

In a trapezium ABCD the vector B vec C = lambda vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

vec(a)=hatj-hatk and vec( c )=hati-hatj-hatk . The vector vec(b) is such that vec(a) xx vec(b)+vec( c )=0 and vec(a)*vec(b)=3 then vec(b) = ………..