Home
Class 12
MATHS
If veca+vecb+vecc=vec0, |veca| = 3, |vec...

If `veca+vecb+vecc=vec0, |veca| = 3, |vecb| = 5, |vecc| = 7`, then angle between `veca` and `vecb` is

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/4`

D

`(pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
B


Let `theta` be the angle between a and b. then, `angleC=pi-theta`.
`thereforecos(pi-theta)=(3^(2)+5^(2)-7^(2))/(2(3)(5))`
`therefore-costheta=(-1)/(2)`
`thereforetheta=60^(@)=(pi)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA*vecB=AB , then angle between vecA and vecB will be …... .

if| vecAxxvecB|=|vecA.vecB| , then angle between vecA and vecB will be

If |vecAxxvecB|=AB , then angle between vecA and vecB will be zero.

For three vectors veca, vecb, vecc satisfies veca+ vecb + vecc = vec0 and |veca| = 3 , |vecb| = 4, |vecc| =2 then veca. vecb + vecb. vecc + vecc.veca = _____________.

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If vecA+ vecB = vecC and A+B=C , then the angle between vecA and vecB is :

If |veca+ vecb| lt | veca- vecb| , then the angle between veca and vecb can lie in the interval

If |vecAxxvecB|=vecA*vecB , then angle between vecA and vecB" is "theta = …...

If vecA xx vecB= vec0 and vecB xx vecC=vec0 , then the angle between vecA and vecC may be :

If vecA.vecB=vec0 and vecAxxvecC=vec0 , then the angle between vecB and vecC is