Home
Class 12
MATHS
In a quadrilateral P Q R S , vec P Q= ve...

In a quadrilateral `P Q R S , vec P Q= vec a , vec Q R = vec b , vec S P= vec a- vec b ,M` is the midpoint of ` vec Q Ra n dX` is a point on `S M` such that `S X=4/5S Mdot` Prove that `P ,Xa n dR` are collinear.

A

`PX=(1)/(5)PR`

B

`PX=(3)/(5)PR`

C

`PX=(2)/(5)PR`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

If we take point P as the origin, the position vectors of Q and S are a and b-a respectively.
In `DeltaPQR`, we have

`PR=PQ+QR impliesPR=a+b`
`therefore`Position vector of R=a+b
`impliesPV` or `M=(a+(a+b))/(2)=(a+(1)/(2)b)`
Now, `SX=(4)/(5)SM`
`impliesXM=SM-SX=SM-(4)/(5)SM=(1)/(5)SM`
`thereforeSX:XM=4:1`
`impliesPV` of `X=(4(a+(1)/(2)b)+1(b-a))/(4+1)`
`=(3a+2b)/(5)impliesPX=(3)/(5)(a+b)`
`impliesPX=(3)/(5)PR`
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: In "Delta"A B C , vec A B+ vec A B+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b

Statement 1: if three points P ,Qa n dR have position vectors vec a , vec b ,a n d vec c , respectively, and 2 vec a+3 vec b-5 vec c=0, then the points P ,Q ,a n dR must be collinear. Statement 2: If for three points A ,B ,a n dC , vec A B=lambda vec A C , then points A ,B ,a n dC must be collinear.

In a quadrilateral ABCD, vec(AB)=vec(b),vec(AD)=vec(d) and vec(AC)=m vec(b)+p vec(d)(m+p ge1) . The area of the quadrilateral ABCD is ……………..

If the lines vec r = vec a + lambda (vec b xx vec c) and vec r = vec b + mu (vec c xx vec a) are intersect then ...............

Statement 1: | vec a|=3,| vec b|=a n d| vec a+ vec b|=5,t h e n| vec a- vec b|=5. Statement 2: The length of the diagonals of a rectangle is the same.

If vec(P) = (k,2,3) and vec(Q) = (0,3,k) and vec(P) bot vec(Q) , then find the value of k .

If vec a , vec b are the position vectors of the points (1,-1),(-2,m), find the value of m for which vec aa n d vec b are collinear.

If vec a\ is a non zero vector of modulus vec a\ a n d\ m is a non zero scalar such that m a is a unit vector, write the value of mdot

Figure shows three vectors vec(a), vec(b) and vec(c) , where R is the midpoint of PQ. Then which of the following relations is correct?

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n