Home
Class 12
MATHS
Orthocenter of an equilateral triangle A...

Orthocenter of an equilateral triangle ABC is the origin O. If `vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc`, then `vec(AB)+2vec(BC)+3vec(CA)=`

A

`3vec(c)`

B

`3vec(a)`

C

0

D

`3vec(b)`

Text Solution

Verified by Experts

The correct Answer is:
B

For an equilateral triangle, centroid is the samme as orthocentre
`therefore(OA+OB+OC)/(3)=0`
`thereforeOA+OB+OC=0`
Now, `AB+2BC+3CA`
`=OB-OA+2OC-2OB+3OA-3OC`
`=-OB+2OA-OC`
`=(OB+OA+OC)+3OA=3OA=3a`
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .

If |vec(a)|=2,|vec(b)|=5 and vec(a).vec(b)=10 then find |vec(a)-vec(b)| .

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

In a regular hexagon ABCDEF, vec(AB)=a, vec(BC)=b and vec(CD) = c. Then, vec(AE) =

If |vec(a)|=10,|vec(b)|=2 and vec(a).vec(b)=12 then find |vec(a)xx vec(b)| .

If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is

If triangle ABC (Fig 10.18), which of the following is not true : (A) vec(AB)+vec(BC)+vec(CA)=vec(0) (B) vec(AB)+vec(BC)-vec(AC)=vec(0) ( C ) vec(AB)+vec(BC)-vec(CA)=vec(0) (D) vec(AB)-vec(CB)+vec(CA)=vec(0)

If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then find the angle between vec(A) and vec(B)

If vecA.vecB=vec0 and vecAxxvecC=vec0 , then the angle between vecB and vecC is