Home
Class 12
MATHS
If veca, vecb and vecc are position vect...

If `veca, vecb` and `vecc` are position vectors of A,B, and C respectively of `DeltaABC` and `if|veca-vecb|,|vecb-vec(c)|=2, |vecc-veca|=3`, then the distance between the centroid and incenter of `triangleABC` is

A

1

B

`(1)/(2)`

C

`(1)/(3)`

D

`(2)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C

Let G be centroid and I be incenter.
`|GI|=|OI-OG|=|(2a+3b+4c)/(9)-(a+b+c)/(3)|`
`=|(-a+c)/(9)|=(3)/(9)=(1)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca+ vecb| lt | veca- vecb| , then the angle between veca and vecb can lie in the interval

Show (veca-vecb)x(veca+vecb)=2(vecaxxvecb)

If veca+vecb+vecc=vec0, |veca| = 3, |vecb| = 5, |vecc| = 7 , then angle between veca and vecb is

If vecA+ vecB = vecC and A+B=C , then the angle between vecA and vecB is :

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If vecA.vecB=vec0 and vecAxxvecC=vec0 , then the angle between vecB and vecC is

When vecA.vecB=-|vecA||vecB| , then :-

if| vecAxxvecB|=|vecA.vecB| , then angle between vecA and vecB will be

If |vecAxxvecB|=AB , then angle between vecA and vecB will be zero.

vecA, vecB" and "vecC are three orthogonal vectors with magnitudes 3, 4 and 12 respectively. The value of |vecA-vecB+vecC| will be :-