Home
Class 12
MATHS
Let veca=(1,1,-1), vecb=(5,-3,-3) and ve...

Let `veca=(1,1,-1), vecb=(5,-3,-3)` and `vecc=(3,-1,2)`. If `vecr` is collinear with `vecc` and has length `(|veca+vecb|)/(2)`, then `vecr` equals

A

`+-3c`

B

`+-(3)/(2)c`

C

`+-c`

D

`+-(2)/(3)c`

Text Solution

Verified by Experts

The correct Answer is:
C

let `r=lamdac`
Given `|r|=|lamda||c|`
`therefore(|a+c|)/(2)=|lamda||c|`
`therefore|6hati-2hatj-4hatk|=2|lamda|3hati-hatj+2hatk|`
`therefore sqrt(56)=2|lamda|sqrt(14)`
`therefore lamda=+-1`
`therefore r=+-c`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are two non collinear unit vectors and iveca+vecbi=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If vecA+ vecB = vecC and A+B=C , then the angle between vecA and vecB is :

Evaluate the product (3veca-5vecb)*(2veca+7vecb) .

If non-zero vectors veca and vecb are equally inclined to coplanar vector vecc , then vecc can be

Statement 1 : Let A(veca), B(vecb) and C(vecc) be three points such that veca = 2hati +hatk , vecb = 3hati -hatj +3hatk and vecc =-hati +7hatj -5hatk . Then OABC is tetrahedron. Statement 2 : Let A(veca) , B(vecb) and C(vecc) be three points such that vectors veca, vecb and vecc are non-coplanar. Then OABC is a tetrahedron, where O is the origin.

Show (veca-vecb)x(veca+vecb)=2(vecaxxvecb)

Verify whether the points (1, 5), (2, 3) and (-2, -1) are collinear or not.

For three vectors veca, vecb, vecc satisfies veca+ vecb + vecc = vec0 and |veca| = 3 , |vecb| = 4, |vecc| =2 then veca. vecb + vecb. vecc + vecc.veca = _____________.