Home
Class 12
MATHS
In a trapezium ABCD the vector B vec C ...

In a trapezium ABCD the vector `B vec C = lambda vec(AD).` If `vec p = A vec C + vec(BD)` is coillinear with `vec(AD)` such that `vec p = mu vec (AD),` then

A

`mu=lamda+1`

B

`lamda=mu+1`

C

`lamda+mu=1`

D

`mu=2+lamda`

Text Solution

Verified by Experts

The correct Answer is:
A

We have, `p=AC+BD=AC+BC+CD`
`=AC+lamdaAD+CD`
`=lamdaAD+(AC+CD)=lamdaAD+AD=(lamda+1)AD`
Therefore, `p=muAD impliesmu=lamda+1`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The position vectors of A, B,C and D are vec a , vec b , vec 2a+ vec 3b and vec a - vec 2b respectively. Show that vec (DB)=3 vec b -vec a and vec (AC) =vec a + vec 3b

Statement 1: In "Delta"A B C , vec A B+ vec A B+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b

If the lines vec r = vec a + lambda (vec b xx vec c) and vec r = vec b + mu (vec c xx vec a) are intersect then ...............

In a regular hexagon ABCDEF, vec(AB) +vec(AC)+vec(AD)+ vec(AE) + vec(AF)=k vec(AD) then k is equal to

vec a , vec b , vec c are three coplanar unit vectors such that vec a+ vec b+ vec c=0. If three vectors vec p , vec q , and vec r are parallel to vec a , vec b , and vec c , respectively, and have integral but different magnitudes, then among the following options, | vec p+ vec q+ vec r| can take a value equal to

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

Find |vec(a)-vec(b)| , if two vectors vec(a) and vec(b) are such that |vec(a)|=2,|vec(b)|=3 and vec(a).vec(b)=4 .

The vectors vec(a) and vec(b) are not perpendicular. The vectors vec( c ) and vec(d) are such that vec(b)xx vec( c )=vec(b)xx vec(d) and vec(a).vec(d)=0 then vec(d) = ……………

The position vectors of the points A, B, C are vec(a),vec(b) and vec( c ) respectively. If the points A, B, C are collinear then prove that vec(a)xx vec(b)+vec(b)xx vec( c )+vec( c )xxvec(a)=vec(0) .

The resultant of two vectors vec(P) and vec(Q) is vec(R) . If vec(Q) is doubled then the new resultant vector is perpendicular to vec(P) . Then magnitude of vec(R) is :-