Home
Class 12
MATHS
The number of distinct real values of la...

The number of distinct real values of `lamda` for which the vectors `veca=lamda^(3)hati+hatk, vecb=hati-lamda^(3)hatj` and `vecc=hati+(2lamda-sin lamda)hatj-lamdahatk` are coplanar is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A

Put `Delta=0 implies lamda^(7)+lamda^(3)+2lamda-sinlamda=0`
Let `f(lamda)=lamda^(7)+lamda^(3)+2lamda-sinlamda`
`impliesf(lamda)=(7lamda^(6)+3lamda^(2)+2-coslamda) gt0, AA in R`
`thereforef(lamda)=0` has only one real solution `lamda=0`.
Promotional Banner

Similar Questions

Explore conceptually related problems

if three vectors are veca=-3hati+2hatj-hatk, vecb=hati-3hatj+5hatk and vecc=2hati+hatj-4hatk then find a-b-c is

Show that the vectors, vec(a)=hati-2hatj+3hatk,vec(b)=-2hati+3hatj-4hatk and vec( c )=hati-3hatj+5hatk are coplanar.

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

Find the sum of the vectors veca=hati-2hatj+hatk,vecb=-2hati+4hatj+5hatkandvecc=hati-6hatj--7hatk .

The value of lamda for which the four points 2hati+3hatj-hatk,hati+2hatj+3hatk,3hati+4hatj-2hatk and hati-lamdahatj+6hatk are coplanar.

Find lambda if the vectors hati-hatj+hatk, 3hati-hatj+2hatk and hati+lambda hatj-3hatk are coplannar.

Calculate vecr=veca-vecb+vecc where veca=5hati+4hatj-6hatk, vecb=-2hati+2hatj+3hatk and vecc=4hati+3hatj+2hatk .

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati-2hatj-4hatk are coplanar.

The unit vector parallel to the resultant of the vectors vecA=4hati+3hatj+5hatk and vecB=-hati+3hatj-8hatk is :

The area of the parallelogram represented by the vectors vecA=2hati+3hatj and vecB=hati+4hatj is