Home
Class 12
MATHS
vec a , vec b , vec c are three coplanar...

` vec a , vec b , vec c` are three coplanar unit vectors such that ` vec a+ vec b+ vec c=0.` If three vectors ` vec p , vec q ,` and `vec r` are parallel to ` vec a , vec b ,` and `vec c ,` respectively, and have integral but different magnitudes, then among the following options, `| vec p+ vec q+ vec r|` can take a value equal to

A

(a) 1

B

(b) 0

C

`(c) sqrt(3)`

D

(d) 2

Text Solution

Verified by Experts

The correct Answer is:
C, D

Let a,b and c lie in the XY-plane
Let `a=hati,b=-(1)/(2)hati+(sqrt(3))/(2)hatj and c=-(1)/(2)hati-(sqrt(3))/(2)hatj`
Therefore, `|p+q+r|=|lamda a+mub+vc|`
`=|lamdahati+mu(-(1)/(2)hati+(sqrt(3))/(2)hatj)+v(-(1)/(2)hati-(sqrt(3))/(2)hatj)|`
`|(lamda+(mu)/(2)-(v)/(2))hati+(sqrt(3))/(2)(mu-v)hatj|`
`=sqrt((lamda-(mu)/(2)-(v)/(2))^(2)+(3)/(4)(mu-v)^(2))`
`=sqrt(lamda^(2)+mu^(2)+v^(2)-lamdamu-lamdav-muv)`
`=(1)/(sqrt(2))sqrt((lamda-mu)^(2)+(mu-v)^(2)+(v-lamda)^(2))`
`=(1)/(sqrt(2))sqrt(1+1+4)=sqrt(3)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The non-zero vectors are vec a,vec b and vec c are related by vec a= 8vec b and vec c = -7vec b . Then the angle between vec a and vec c is

The non-zero vectors are vec a,vec b and vec c are related by vec a= 8vec b and vec c = -7vec b . Then the angle between vec a and vec c is

Let vec(a),vec(b) and vec( c ) are three unit vectors such that vec(a)xx(vec(b)xx vec( c ))=(sqrt(3))/(2)(vec(b)+vec( c )) . If the vectors vec(b) and vec( c ) are not parallel then the angle between vec(a) and vec(b) is ……….

Let vec(a),vec(b) and vec( c ) be unit vectors such that vec(a).vec(b)=vec(a).vec( c )=0 and the angle between vec(b) and vec( c ) is (pi)/(6) . Prove that vec(a)=+-2(vec(b)xx vec( c )) .

vec(a) and vec(b) are any two vectors. Prove that |vec(a)+vec(b)|le|vec(a)|+|vec(b)|

Let vec(p),vec(q),vec(r) be three unit vectors such that vec(p)xxvec(q)=vec(r) . If vec(a) is any vector such that [vec(a),vec(q),vec(r )]=1,[vec(a),vec(r),vec(p )]=2 , and [vec(a),vec(p),vec(q )]=3 , then vec(a)=

If vec c = 3vec a+4vec b and 2vec c =vec a -3vec b , show that (i) vec c and vec a have the same direction and |vec c| gt |vec a| (ii) vec b and vec c have opposite direction and |vec c| gt |vec b|

Statement 1: In "Delta"A B C , vec A B+ vec A B+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b

Show that the vectors vec(a),vec(b) and vec( c ) coplanar if vec(a)+vec(b),vec(b)+vec( c ) and vec( c )+vec(a) are coplanar.