Home
Class 12
MATHS
Statement 1: | vec a|=3,| vec b|=a n d| ...

Statement 1: `| vec a|=3,| vec b|=a n d| vec a+ vec b|=5,t h e n| vec a- vec b|=5.` Statement 2: The length of the diagonals of a rectangle is the same.

A

Statement-II and statement II ar correct and Statement III is the correct explanation of statement I

B

Both statement I and statement II are correct but statement II is not the correct explanation of statement I

C

Statement I is correct but statement II is incorrect

D

Statement II is correct but statement I is incorrect

Text Solution

Verified by Experts

The correct Answer is:
A

We have, adjacent sides of triangle `|a|=3,|b|=4`
the length of the diagonal is `|a+b|=5`
Since, it satisfies the Pythagoras theorem, `a bot b`
So, the parallelogram is a rectangle.
Hence, the length of the other diagonal is `|a-b|=5`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: If | vec a+ vec b|=| vec a- vec b|,t h e n vec aa n d vec b are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle.

If |vec(a)|=2,|vec(b)|=5 and vec(a).vec(b)=10 then find |vec(a)-vec(b)| .

If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .

If |vec(a)|=10,|vec(b)|=2 and vec(a).vec(b)=12 then find |vec(a)xx vec(b)| .

Statement 1: In "Delta"A B C , vec A B+ vec A B+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b

If |vec(a)+vec(b)|=60,|vec(a)-vec(b)|=40 and |vec(b)|=46 find |vec(a)| .

Statement 1: Let vec a , vec b , vec ca n d vec d be the position vectors of four points A ,B ,Ca n dD and 3 vec a-2 vec b+5 vec c-6 vec d=0. Then points A ,B ,C ,a n dD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector ( vec P Q , vec P Ra n d vec P S) are coplanar. Then vec P Q=lambda vec P R+mu vec P S ,w h e r elambdaa n dmu are scalars.

For the vectors vec(a),vec(b) and vec( c ),|vec(a)|=3,|vec(b)|=4 and |vec( c )|=5 . Each vector is the perpendicular to the sum of remaining two vectors. Find |vec(a)+vec(b)+vec( c )| .

Statement 1: If vec u a n d vec v are unit vectors inclined at an angle alphaa n d vec x is a unit vector bisecting the angle between them, then vec x=( vec u+ vec v)//(2sin(alpha//2)dot Statement 2: If "Delta"A B C is an isosceles triangle with A B=A C=1, then the vector representing the bisector of angel A is given by vec A D=( vec A B+ vec A C)//2.

If |vec(a)xx vec(b)|=vec(a).vec(b) then find the angle between vec(a) and vec(b) .