Home
Class 12
MATHS
Statement 1: Let vec a , vec b , vec ca...

Statement 1: Let ` vec a , vec b , vec ca n d vec d` be the position vectors of four points `A ,B ,Ca n dD` and `3 vec a-2 vec b+5 vec c-6 vec d=0.` Then points `A ,B ,C ,a n dD` are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector `( vec P Q , vec P Ra n d vec P S)` are coplanar. Then ` vec P Q=lambda vec P R+mu vec P S ,w h e r elambdaa n dmu` are scalars.

A

Statement-II and statement II ar correct and Statement III is the correct explanation of statement I

B

Both statement I and statement II are correct but statement II is not the correct explanation of statement I

C

Statement I is correct but statement II is incorrect

D

Statement II is correct but statement I is incorrect

Text Solution

Verified by Experts

The correct Answer is:
A

`3a-2b+5c-6d=(2a-2b)+(-5a+5c)+(6a-6d)`
`=-2AB+5AC-6AD=0`
therefore, AB,AC and AD are linearly dependent.
Hence, by statement II, statement I is true.
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec b are the position vectors of the points (1,-1),(-2,m), find the value of m for which vec aa n d vec b are collinear.

Statement 1: if three points P ,Qa n dR have position vectors vec a , vec b ,a n d vec c , respectively, and 2 vec a+3 vec b-5 vec c=0, then the points P ,Q ,a n dR must be collinear. Statement 2: If for three points A ,B ,a n dC , vec A B=lambda vec A C , then points A ,B ,a n dC must be collinear.

If the position vector of a point A is vec a + 2 vec b and vec a divides AB in the ratio 2:3 , then the position vector of B, is

Find the position vectors of the points which divide the join of the points 2 vec a-3 vec ba n d3 vec a-2 vec b internally and externally in the ratio 2:3 .

Statement 1: In "Delta"A B C , vec A B+ vec A B+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b

The non-zero vectors are vec a,vec b and vec c are related by vec a= 8vec b and vec c = -7vec b . Then the angle between vec a and vec c is

The non-zero vectors are vec a,vec b and vec c are related by vec a= 8vec b and vec c = -7vec b . Then the angle between vec a and vec c is

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n

Show that the vectors vec(a),vec(b) and vec( c ) coplanar if vec(a)+vec(b),vec(b)+vec( c ) and vec( c )+vec(a) are coplanar.

If vec a , vec b , vec c , vec d are the position vector of point A , B , C and D , respectively referred to the same origin O such that no three of these point are collinear and vec a + vec c = vec b + vec d , than quadrilateral A B C D is a ;