Home
Class 12
MATHS
Let ABC be a triangle whose centroid is ...

Let ABC be a triangle whose centroid is G, orthocentre is H and circumcentre is the origin 'O'. If D is any point in the plane of the triangle such that no three of O,A,C and D are collinear satisfying the relation. AD+BD+CH+3HG=`lamdaHD`, then what is the value of the scalar `lamda`.

Text Solution

Verified by Experts

The correct Answer is:
2

`LHS=d-a+d-b+h-c+3(g-h)`
`=2d-(a+b+c)+3((a+b+c))/(3)-2h`
`=2d-2h=2(d-h)=2HDimplies lamda=2.`
Promotional Banner

Similar Questions

Explore conceptually related problems

let ABC be a right angled triangle at C. If the inscribed circle touches the side AB at D and (AD) (BD)=11, then find the area of triangle ABC. .

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

The sides of a triangle ABC are as shown in the given figure. Let D be any internal point of this triangle and let e,f and g denote the distance between the point D and the sides of the triangle. The sum (5e +12f +13g) is equal to

If vec a , vec b , vec c , vec d are the position vector of point A , B , C and D , respectively referred to the same origin O such that no three of these point are collinear and vec a + vec c = vec b + vec d , than quadrilateral A B C D is a ;

A variable plane at a distance of 1 unit from the origin cuts the axes at A, B and C. If the centroid D(x, y, z) of triangleABC satisfies the relation (1)/(x^2)+(1)/(y^2)+(1)/(z^2)=K, then the value of K is

lf G be the centroid of a triangle ABC and P be any other point in the plane prove that PA^2+PB^2+PC^2=GA^2+GB^2+GC^2+3GP^2

A,B and C are the points respectively the complex numbers z_(1),z_(2) and z_(3) respectivley, on the complex plane and the circumcentre of /_\ABC lies at the origin. If the altitude of the triangle through the vertex. A meets the circumcircle again at P, prove that P represents the complex number (-(z_(2)z_(3))/(z_(1))) .

If A=(1, 2, 3), B=(4, 5, 6), C=(7, 8, 9) and D, E, F are the mid points of the triangle ABC, then find the centroid of the triangle DEF.

Let G_(1), G(2) and G_(3) be the centroid of the triangular faces OBC, OCA and OAB of a tetrahedron OABC. If V_(1) denotes the volume of tetrahedron OABC and V_(2) that of the parallelepiped with OG_(1), OG_(2) and OG_(3) as three concurrent edges, then the value of (4V_(1))/(V_2) is (where O is the origin

In a three dimensional co-odinate , P, Q and R are images of a point A(a, b, c) in the xy, yz and zx planes, respectively. If G is the centroid of triangle PQR, then area of triangle AOG is (O is origin)