Home
Class 12
MATHS
If the points a(cosalpha+hatisinalpha),b...

If the points `a(cosalpha+hatisinalpha),b(cosbeta+hatisinbeta) and c(cosgamma+hati sin gamma)` are collinear, then the value of |z| is . . (where `z=bc sin(beta-gamma)+ca sin(gamma-alpha)+ab sin(alpha-beta)+3hati`)

Text Solution

Verified by Experts

The correct Answer is:
3

`|(acosbeta,asinalpha,1),(bcosbeta,bsinbeta,1),(c cosgammac sin gamma,10)|=0`
`impliesbcsin(gamma-beta)+a sin(alpha-gamma)+absin(beta-alpha)=0`
`implies|z|=3`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find distance PQ between the points P ( a cos alpha, a sin alpha) and Q ( a cos beta, a sin beta) .

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha,beta,gamma are the cube roots of p, then for any x,y,z (x alpha + y beta + z gamma)/(x beta + y gamma + z alpha =

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If the function f(x)=x^(3)-9x^(2)+24x+c has three real and distinct roots alpha, beta and gamma , then the value of [alpha]+[beta]+[gamma] is

If f(x) = |{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta+gamma),sin(gamma+alpha),sin(alpha+beta)):}| then f(theta)-2f(phi)+f(psi) is equal to

A line makes angles alpha, beta, gamma and delta with the diagonals of a cube, prove that sin^(2) alpha + sin^(2) beta + sin^(2) gamma + sin^(2) delta = (8)/(3) .

If vec(alpha), vec(beta),vec(gamma) are three non-collinear unit vectors such that vec(alpha)+2vec(beta)+3vec(gamma) is collinear with vec(beta)+vec(y) and vec(alpha)+2vec(beta) is collinear with vec(beta)-vec(gamma) , then 2vec(alpha).vec(beta)+6vec(alpha).vec(gamma) +3vec(beta).vec(gamma) equal to

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If Delta_(1) is the area of the triangle with vertices (0, 0), (a tan alpha, b cot alpha), (a sin alpha, b cos alpha), Delta_(2) is the area of the triangle with vertices (a sec^(2) alpha, b cos ec^(2) alpha), (a + a sin^(2)alpha, b + b cos^(2)alpha) and Delta_(3) is the area of the triangle with vertices (0,0), (a tan alpha, -b cot alpha), (a sin alpha, b cos alpha) . Show that there is no value of alpha for which Delta_(1), Delta_(2) and Delta_(3) are in GP.