Home
Class 12
MATHS
A particle, in equilibrium, is subjected...

A particle, in equilibrium, is subjected to four forces `vecF_1, vecF_2, vecF_3` and `vecF_4`, ` vec F_1 =-10 hat k , vec F _2 =u(4/13 hat i-12/13 hat j+3/13 hatk) , vec F _3 =v(-4/13 hat i-12/13 hat j+3/13 hatk), vec F_4 =w(cos theta hat i+sin theta hat j) ` then find the values of u,v and w

Text Solution

Verified by Experts

Since, the particle is in equilibrium.
`F_(1)+F_(2)+F_(3)+F_(4)=0`
`-10hatk+u((4)/(13)hati-(12)/(13)hatj+(3)/(13)hatk)+v(-(4)/(13)hati-(12)/(13)hatj+(3)/(13)hatk)+w(costhetahati+sinthetahatj)=0`
`implies((4u)/(13)-(4v)/(13)+wcostheta)hati+((-12)/(13)u-(12)/(13)v+wsintheta)hatj+((3)/(13)u+(3)/(13)v-10)hatk=0`
`implies(4u)/(13)-(4v)/(13)+wcostheta=0` . . . (i)
`-(12)/(13)u-(12)/(13)v+wsintheta=0` . . . (ii)
`(3)/(13)u+(3)/(13)v-10=0`
From Eq. (iii), we get `u+v=(130)/(3)`
From eq. (ii), we get
`-(12)/(13)(u+v)+wsintheta=0`
`implies-(12)/(13)((130)/(3))+wsintheta=0`
`implies w=(40)/(sintheta)=40` cosec `theta`
On substituting the value of w in eqs. (i) and (ii), we get
`u-v=-130cot theta`
and `u+v=(130)/(3)`
On solving we get
`u+(65)/(3)-65 cot theta`
`v+(65)/(3)+65cot theta and w=40" cosec "theta`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The vector equation of the plane containing the line vec r (-2 hat i - 3 hat + 4 hatk) + lambda (3 hat i - 2 hat j - hat k) and the point hat i + 2 hatj + 3 hat k is ..........

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)

Find the angle between the line vec r= hat i+2 hat j- hat k+lambda( hat i- hat j+ hat k) and the plane vec r .(2 hat i- hat j+ hat k)=4.

Find the shortest distance between the lines vec r=(4 hat i- hat j)+lambda( hat i+2 hat j-3 hat k)a n d vec r=( hat i- hat j+2 hat k)+mu(2 hat i+4 hat j-5 hat k)dot .

The angle between the line bar r = (2 hat i - hat j + hat k) + lambda( - hat i + hat j + hat k) and the plane bar. (3 hat i + 2 hat j - hat k) = 4 is...............

If the angle between vec(A) = 2hat(i)+4hat(j)+2hat(k) and vec(B) =2hat(i) +hat(k) " is " 30^(@) , then find the projection of vec(B ) on A .

Find the shortest distance between lines vec r=( hat i+2 hat j+ hat k)+lambda(2 hat i+ hat j+2 hat k)a n d vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)dot

The distance between the line bar r = 2 hat i - 2 hat j + 3 hat k + lambda(hat i - hat j + 4 hat k) and the plane bar r. (hat i + 5 hat j + hat k) = 5 is..........