Home
Class 12
MATHS
If G is the centroid of Delta ABC and G'...

If G is the centroid of `Delta ABC and G' ` is the centroid of `Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' = `

Text Solution

Verified by Experts

Here,
G is centroid of `DeltaABC` and G' is centroid of `DeltaA'B'C'`, shown as in figure.

Clearly, `A A'=AG+G G'+G'A'` (polygon law)
`B B'=BG+G G'+G'B'`
`C C'=CG+CG'+G'C'`
On adding these
`A A'+B B'+C C'=3G G'+(AG+BG+CG)+(G'A'+G'B'+G'C')`
`=3G G'+(AG+2DG)+(G'A'+2G'D')`
(usingg AD and A'D' as the medians of `DeltaABC` and `DeltaA'B'C'`, respectively).
`=3G G'+(AG+GA)+G'A'+A'G'`
`=3G G'+O+O`
`therefore A A'+B B'+C C'=3G G'`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

If A, B, C are the vertices of a triangle whose position vectros are vec a,vec b, vec c and G is the centroid of the DeltaABC, then overline(GA)+overline(GB)+overline(GC) =

' I ' is the incentre of triangle A B C whose corresponding sides are a , b ,c , rspectively. a vec I A+b vec I B+c vec I C is always equal to a. vec0 b. (a+b+c) vec B C c. ( vec a+ vec b+ vec c) vec A C d. (a+b+c) vec A B

The plane ax + by + cz = 1 intersects the axes in A, B and C respetively. The centroid of Delta ABC is G (1/6, -1/3 , 1) . Then a + b + 3c = .......

The centroid of DeltaABC is G. The angle between vec(GB) and vec(GC) is obtuse angle then …………..

If vec xa n d vec y are two non-collinear vectors and a, b, and c represent the sides of a A B C satisfying (a-b) vec x+(b-c) vec y+(c-a)( vec x X vec y)=0, then A B C is (where vec x X vec y is perpendicular to the plane of xa n dy ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

Statement 1: If vec u a n d vec v are unit vectors inclined at an angle alphaa n d vec x is a unit vector bisecting the angle between them, then vec x=( vec u+ vec v)//(2sin(alpha//2)dot Statement 2: If "Delta"A B C is an isosceles triangle with A B=A C=1, then the vector representing the bisector of angel A is given by vec A D=( vec A B+ vec A C)//2.

A plane meets the axes in the points, A, B and C. If the centroid of Delta ABC is (alpha,beta, gamma) then the plane is ...............

Statement 1: In "Delta"A B C , vec A B+ vec A B+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b

If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(-2, b, -5) and C(4, 7, c), Find the values of a, b, c.