Home
Class 12
MATHS
If vec c = 3vec a+4vec b and 2vec c =vec...

If `vec c = 3vec a+4vec b and 2vec c =vec a -3vec b`, show that (i) `vec c and vec a` have the same direction and `|vec c| gt |vec a|`(ii) `vec b and vec c` have opposite direction and `|vec c| gt |vec b|`

Text Solution

Verified by Experts

We have,
`c=3a+4b and 2c=a-3b`
`implies2(3a+4b)=a-3b`
`implies5a=-11b`
`implies a=-(11)/(5)b and b=-(5)/(11)a`
(i) `c=3a+b=3a+4(-(5)/(11)a)" "(using" "b=-(5)/(11)a)`
`=3a-(20)/(11)a=(13)/(11)a`
which shows that c and a have the same direction.
and `c=(13)/(11)a `
`implies|c|=(13)/(11)|a|implies|c|gt|a|`
(ii) we have, `c=3a+4b and a=-(11)/(5)b`
`c=3(-(11)/(5)b)+4b=-(33)/(5)b+4b`
`c=-(13)/(5)b`
this shows c and b have opposite directions. ,brgt also `|c|=|-(13)/(5)b|=(13)/(5)|b|implies|c|gt|b|`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The non-zero vectors are vec a,vec b and vec c are related by vec a= 8vec b and vec c = -7vec b . Then the angle between vec a and vec c is

The non-zero vectors are vec a,vec b and vec c are related by vec a= 8vec b and vec c = -7vec b . Then the angle between vec a and vec c is

If the lines vec r = vec a + lambda (vec b xx vec c) and vec r = vec b + mu (vec c xx vec a) are intersect then ...............

The position vectors of A, B,C and D are vec a , vec b , vec 2a+ vec 3b and vec a - vec 2b respectively. Show that vec (DB)=3 vec b -vec a and vec (AC) =vec a + vec 3b

vec a , vec b , vec c are three coplanar unit vectors such that vec a+ vec b+ vec c=0. If three vectors vec p , vec q , and vec r are parallel to vec a , vec b , and vec c , respectively, and have integral but different magnitudes, then among the following options, | vec p+ vec q+ vec r| can take a value equal to

Show that the vectors vec(a),vec(b) and vec( c ) coplanar if vec(a)+vec(b),vec(b)+vec( c ) and vec( c )+vec(a) are coplanar.

For vectors vec(a),vec(b) and vec( c ),vec(a).vec(b)=vec(a).vec( c ) and vec(a)xx vec(b)=vec(a)xx vec( c ),vec(a) ne vec(0) then show that vec(b)=vec( c ) .

(vec(a)xx vec(b))xx vec( c )=vec(a)xx(vec(b)xx vec( c )) . If vec(a)*vec( c ) ……………

Let vec(a),vec(b) and vec( c ) be unit vectors such that vec(a).vec(b)=vec(a).vec( c )=0 and the angle between vec(b) and vec( c ) is (pi)/(6) . Prove that vec(a)=+-2(vec(b)xx vec( c )) .

vec(a)_|_vec(b) and vec(c),|vec(a)|=2,|vec(b)|=3,|vec( c )|=4 . The angle between vec(b) and vec( c ) is (2pi)/(3) then |[vec(a) vec(b) vec( c )]| = …………