Home
Class 12
MATHS
Let vec A(t) = f1(t) hat i + f2(t) hat ...

Let `vec A(t) = f_1(t) hat i + f_2(t) hat j and vec B(t) = g(t)hat i+g_2(t) hat j,t in [0,1],f_1,f_2,g_1 g_2` are continuous functions. If `vec A(t) and vec B(t)` are non-zero vectors for all `t and vec A(0) = 2hat i + 3hat j,vec A(1) = 6hat i + 2hat j, vec B(0) = 3hat i + 2hat i and vec B(1) = 2hat j + 6hat j` Then,show that `vec A(t) and vec B(t)` are parallel for some `t`.

Text Solution

Verified by Experts

If A(t) and B(t) are non-zero vectors for all t
and A(0)=`2hati+3hatj,A(1)=6hati+2hatj,B(0)=3hati+2hatj`,
and `B(1)=2hati+6hatj`
In order to prove that `A(t) and B(t)` are parallel vectors for some values of t. it is sufficient to show A(t)=`lamdaB(t)` for some `lamda`.
`hArr {f_(1)(t)hati+f_(2)(t)hatj}=lamda{g_(1)(t)hati+g_(2)(t) hatj}`
`hArr f_(1)(t)=lamdag_(1)t and f_(2)(t)=lamdag_(2)(t)`
`harr(f_(1)(t))/(f_(2)(t))=(g_(1)(t))/(g_(2)(t))`
`harr f_(2)(t)g_(2)(t)-f_(2)(t)g_(1)t=0` for some `t in [0,1]`
let `f(t)=f_(1)(t)g_(2)(t)-f_(2)(t)g_(1)(t),t in [0,1]`
Since, `f_(1),f_(2),g_(1) and g_(2)` are continuous functions.
`thereforeF(t)` is also a continuous functions.
Also, `f(0)=f_(1)(0)g_(2)(0)-g_(1)(0)f_(2)(0)`
`=2xx2-3xx3=4-9=-5 lt 0`
and `f(1)=f_(1)(1)g_(2)(1)-g_(1)(1)f_(2)(1)`
`=6xx6-2xx2=32 gt 0`
thus, F(t) is a continuous function on [0,1] such that `F(0)*F(1) lt 0`.
`therefore`By intermediate value theorem, there exists some `t in (0,1)`
such that
`f(t)=0`
`implies f(t)g_(2)(t)-f_(2)(t)g_(1)t=0`
`implies A(t)=lamdaB(t)` for some `lamda`.
Hence, A(t) and B(t) are parallel vectors.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)

If vec(A) =2hat(i)-2hat(j) and vec(B)=2hat(k) then vec(A).vec(B) ……

Find the angle between the line vec r= hat i+2 hat j- hat k+lambda( hat i- hat j+ hat k) and the plane vec r .(2 hat i- hat j+ hat k)=4.

The centre of the circle given by vec r* (hat i+ 2hat j + 2hat k) = 15 and |vec r-(hat j + 2hat k)| = 4 is

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

Find the shortest distance between lines vec r=( hat i+2 hat j+ hat k)+lambda(2 hat i+ hat j+2 hat k)a n d vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)dot

Find the shortest distance between the lines vec r=(4 hat i- hat j)+lambda( hat i+2 hat j-3 hat k)a n d vec r=( hat i- hat j+2 hat k)+mu(2 hat i+4 hat j-5 hat k)dot .

The vector equation of the plane containing the line vec r (-2 hat i - 3 hat + 4 hatk) + lambda (3 hat i - 2 hat j - hat k) and the point hat i + 2 hatj + 3 hat k is ..........