Home
Class 12
MATHS
If (a, 1, 1), (1, b, 1) and (1, 1, c) ar...

If (a, 1, 1), (1, b, 1) and (1, 1, c) are coplanar then prove that `(1)/(1-a)+(1)/(1-b)+(1)/(1-c)=1`.

Text Solution

Verified by Experts

The vectors are coplanar, if we can fiind two scalars `lamda and mu` such that
`(xhati+hatj+hatk)=lamda(hati+yhatj+hatk)+mu(hati+hatj+zhatk)`
`impliesx=lamda+mu,1=lamda y+mu,1=lamda+muz`
`implies x=lamda+mu,y=(1-mu)/(lamda),z=(1-lamda)/(mu)`
`implies 1-x=1-lamda-mu,1-y=(lamda-1+mu)/(lamda)`
`1-z=(mu-1+lamda)/(mu)`
`therefore(1)/(1-x)+(1)/(1-y)+(1)/(1-z)=(1)/(1-lamda-mu)+(lamda)/(lamda+mu-1)+(mu)/(lamda+mu-1)`
`=(-1+lamda+mu)/(lamda+mu-1)=1`
`implies(1)/(1-x)+(1)/(1-y)+(1)/(1-z)=1`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If the lines ax + y + 1 = 0, x + by + 1 = 0 and x + y + c = 0 are concurrent then prove that, (1)/( 1-a) + (1) /( 1-b) + (1) /( 1-c) = .

If points (a,0), (0,b) and (1,1) are collinear , then (1)/(a) + (1)/(b) = . . . . .

If a^(2) + 2bc, b^(2) + 2ac, c^(2) + 2ab are in A.P then prove that (1)/(b-c), (1)/(c-a) and (1)/(a-b) are in A.P.

Show that the points (a, 0), (0, b) and (1, 1) are collinear, if (1)/(a)+(1)/(b)=1

Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a', b', c', respectively from the origin, then prove that (1)/(a^2)+(1)/(b^2)+(1)/(c^2)=(1)/((a')^2)+(1)/((b')^2)+(1)/((c')^2) .

Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then (1)/(a^2)+(1)/(b^2)+(1)/(c^2)=(1)/(p^2)

If A=[{:(2,3),(1,-4):}] and B=[{:(1,-2),(-1,3):}] then verify that (AB)^(-1)=B^(-1)A^(-1)

If A=[{:(2,3),(1,-4):}] and B=[{:(1,-2),(-1,3):}] then verify that (AB)^(-1)=B^(-1)A^(-1)

Show that the four points A(0,-1,0), B(2,1,-1), C(1,1,1) and D(3,3,0) are coplanar. Find the equation of the plane containing them.

If in a triangle ABC, /_C=60^@ , then prove that 1/(a+c)+1/(b+c)=3/(a+b+c)