Home
Class 12
MATHS
If veca, vecb and vecc are any three non...

If `veca, vecb and vecc` are any three non-coplanar vectors, then prove that points `l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc` are coplanar if `|{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0`

Text Solution

Verified by Experts

We know that, four points having position vectors, a,b,c and d are coplanar, if there exists scalarrs x,y,z and t such that
`xa+yb+zc+td=0` where x+y+z+t=0
So, the given points will be coplanar, if thre exists scalars x,y,z and t such that
`x(l_(1)a+m_(1)b+n_(1)c)+y(l_(2)a+m_(2)b+n_(2)c)+z(l_(3)a+m_(3)b+n_(3)c)+t(l_(4)a+m_(4)b+n_(4)c)=0`
where, `x+y+z+t=0`
`implies (l_(1)x+l_(2)y+l_(3)z+l_(4)t)a+(m_(1)x+m_(2)y+m_(3)z+m_(4)t)b+(n_(1)x+n_(2)y+n_(3)z+n_(4)t)c=0`
where, `x+y+z+t=0`
`l_(1)x+l_(2)y+l_(3)z+l_(4)t0` . . (i)
`m_(1)x+m_(2)y+m_(3)z+m_(4)t=0` . . (ii)
`n_(1)x+n_(2)y+n_(3)z+n_(4)t=0` . . (iii)
and x+y+z+t=0 . . (iv)
Eliminating x,y,z and t from above equation, we get
`|(l_(1),l_(2),l_(3),l_(4)),(m_(1),m_(2),m_(3),m_(4)),(n_(1),n_(2),n_(3),n_(4)),(1,1,1,1)|=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are two non collinear unit vectors and iveca+vecbi=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If vector (veca+ 2vecb) is perpendicular to vector (5veca-4vecb) , then find the angle between veca and vecb .

If l_(i)^(2)+m_(i)^(2)+n_(i)^(2)=1 , (i=1,2,3) and l_(i)l_(j)+m_(i)m_(j)+n_(i)n_(j)=0,(i ne j,i,j=1,2,3) and Delta=|{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}| then

vecA, vecB" and "vecC are three orthogonal vectors with magnitudes 3, 4 and 12 respectively. The value of |vecA-vecB+vecC| will be :-

For three vectors veca, vecb, vecc satisfies veca+ vecb + vecc = vec0 and |veca| = 3 , |vecb| = 4, |vecc| =2 then veca. vecb + vecb. vecc + vecc.veca = _____________.

State the value of n, l, m_(l) and m_(s) for 4f.

(vecA+2vecB).(2vecA-3vecB) :-

Evaluate the product (3veca-5vecb)*(2veca+7vecb) .

If veca+vecb+vecc=vec0, |veca| = 3, |vecb| = 5, |vecc| = 7 , then angle between veca and vecb is