Home
Class 12
MATHS
In a regular hexagon ABCDEF, vec(AB) +ve...

In a regular hexagon `ABCDEF, vec(AB) +vec(AC)+vec(AD)+ vec(AE) + vec(AF)=k vec(AD)` then k is equal to

A

2

B

3

C

4

D

6

Text Solution

Verified by Experts

The correct Answer is:
B

By triangle law, `AB=AD-BD,AC=AD-CD`

Therefore, `AB+AC+AD+AE+AF`
`=3AD+(AE-BD)+(AF-CD)=3AD`
hence, `lamda=3" "(becauseAE=BD,AF=CD)`
Promotional Banner

Similar Questions

Explore conceptually related problems

In a regular hexagon ABCDEF, vec(AE)

In a regular hexagon ABCDEF, vec(AB)=a, vec(BC)=b and vec(CD) = c. Then, vec(AE) =

In a quadrilateral ABCD, vec(AB)=vec(b),vec(AD)=vec(d) and vec(AC)=m vec(b)+p vec(d)(m+p ge1) . The area of the quadrilateral ABCD is ……………..

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

In a regular hexagon two vec(PQ)=vecA, vec(RP)=vecB . Express other vectors's in term of them :-

In a trapezium ABCD the vector B vec C = lambda vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

If A, B, C and D by any four points in space, prove that |vec(AB)xx vec(CD)+vec(BC)xx vec(AD)+vec(CA)xx vec(BD)|=4 (Area of triangle ABC)

Let vec(a), vec(b), vec(c) be vectors of length 3, 4, 5 respectively. Let vec(a) be perpendicular to vec(b)+vec(c), vec(b) to vec(c)+vec(a) and vec(c) to vec(a)+vec(b) . Then |vec(a)+vec(b)+vec(c)| is :

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

State whether the following relations are true or false (1) vec(AB)=vec(BA) (2) vec(AB)=-vec(BA) (3) |vec(AB)|=|vec(BA)| (4) |vec(AB)|=|-vec(AB)| (5) hatj=hatk (6) |hatj|=|hatk|