Home
Class 12
MATHS
If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b...

If `|{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0` and the vectors
`overset(to)((A)) =(1, a, a^(2)) , overset(to)((B)) = (1, b, b^(2)) , overset(to)((C))=(1,c,c^(2))`
are non-coplanar then the value of `abc` = ….

A

2

B

`-1`

C

`1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

Since, `|(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),a+c^(3))|=|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|+|(a,a^(2),a^(3)),(b,b^(2),b^(3)),(c,c^(2),c^(3))|=0`
`implies |(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=abc|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=0`
`implies (1+abc)|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=0" "[because|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)| ne 0]`
`implies 1+abc=0`
`implies abc=-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If P(B)=(3)/(4), P(A cap B cap overset(-)(c ))=(1)/(3) and P(overset( -)(A) cap B cap overset(-)(C ))=(1)/(3) , then P(B cap C) is equal to

If |a|=1,|b|=3 and |c|=5 , then the value of [a-b" "b-c" "c-a] is

|{:(a,-b,a-b),(b,c,b-c),(2,1,0):}|=0 then a,b,c are in …………..

If the points A(-1, -4) , B(b,c) and C(5,-1) are collinear and 2b + c = 4 , find the values of b and c.

p=2a-3b,q=a-2b+c and r=-3a+b+2c , where a,b,c being non-coplanar vectors, then the vector -2a+3b-c is equal to