Home
Class 12
MATHS
(i) Write sum(r=1)^(n)(r^(2)+2) in expan...

(i) Write `sum_(r=1)^(n)(r^(2)+2)` in expanded form.
(ii) Write the series `(1)/(3)+(2)/(4)+(3)/(5)+(4)/(6)+"…"+(n)/(n+2)` in sigma form.

Text Solution

Verified by Experts

(i) On putting `r=1,2,3,4,"....","n in"(r^(2)+2),`
we get `3,6,11,18,"…",` `(n^(2)+2)`
Hence,`sum_(r=1)^(n)(r^(2)+2)=3+6+11+18+"...."+(n^(2)+2)`
(ii) The rth terms of series `=(r)/(r+2).`
Hence, the give series can be written as
`(1)/(3)+(2)/(4)+(3)/(5)+(4)/(6)+"...."+(n)/(n+2)=sum_(r=1)^(n)((r)/(r+2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Write (3a+4b + 5c)^(2) in expanded form.

Write the set {(1)/(2),(2)/(3),(3)/(4),(4)/(5),(5)/(6),(6)/(7)} in the set-builder form.

sum_(r=1)^n(2r+1)=...... .

Write the following cubes in expanded form : (2x+1)^(3)

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

(1)/(1*2)+(1)/(2*3)+(1)/(3*4)+"…."+(1)/(n(n+1)) equals

Write the following cubes in expanded form : [(3)/(2)x+1]^(3)

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

Find the sum of the series (1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n! .

Find the sum of n terms of the series 1+4/5+7/(5^2)+10/5^3+dot