Home
Class 12
MATHS
If a, b, c, d are distinct integers in A...

If a, b, c, d are distinct integers in A. P. Such that `d=a^2+b^2+c^2`, then a + b + c + d is

Text Solution

Verified by Experts

Here, sum of numbers `i.e.,a+b+c+d` is not given.
Let `b=a+D,c=a+2D, d=a+3D,AAD in N`
According to hypothesis,
`a+3D=a^(2)+(a+D^(2))+(a+2D)^(2)`
` implies 5D^(2)+3(2a-1)D+3a^(2)-a=0" " ".....(i)"`
` therefore D=(-3(2a-1)pm sqrt(9(2a-1)^(2)-20(3a^(2)-a)))/(10)`
` =(-3(2a-1)pm sqrt(24a^(2)-16a+9))/(10)`
Now, ` -24a^(2)-16a+9 ge 0`
` implies 24a^(2)-16a-9 le 0` ` implies -(1)/(3)-(sqrt70)/(3) le-(1)/(3)+(sqrt70)/(12)`
` implies a=-1,0 " " [therefore a in I]`
When a=0 from Eq.(i), `D=0,(3)/(5)("not possible"therefore D in N) " and for " a=-1`
From Eq. (i), `D=1,(4)/(5)`
`therefore D=1`
`therefore a=-1, b=0, c=1, d=2 " " [therefore D in N]`
Then, `a+b+c+d=1-+0+1+2=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c, d and p are different real numbers such that (a^2 + b^2 + c^2)p^2 – 2(ab + bc + cd) p + (b^2 + c^2 + d^2) le 0 , then show that a, b, c and d are in GP.

if a,b, c, d and p are distinct real number such that (a^(2) + b^(2) + c^(2))p^(2) - 2p (ab + bc + cd) + (b^(2) + c^(2) + d^(2)) lt= 0 then a, b, c, d are in

If a,b,c are three terms in A.P and a^(2), b^(2), c^(2) are in G.P. and a + b + c = (3)/(2) then find a. (where a lt b lt c )

If a,b,c,d,e,f are in A.P. then d-b= ……

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2

If the integers a,b,c,d are in arithmetic progression and a lt b lt c lt d and d=a^(2)+b^(2)+c^(2) , the value of (a+10b+100c+1000d) is

If a,b,c,d ,e are +ve real numbers such that a+b+c+d+e=8 and a^2 + b^2 +c^2 + d^2 +e^2 = 16 , then the range of 'e' is

If a, b, c, d are in G.P, prove that (a^n + b^n), (b^n + c^n), (c^n + d^n) are in G.P.

If a,b,c and d are odd natural numbers such that a+b+c+d=20, the number of values of the ordered quadruplet (a,b,c,d) is

If a,b,c,d be four distinct positive quantities in AP, then (a) bcgtad (b) c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))