Home
Class 12
MATHS
1,1+I,2i,-2+2i,"…."i= sqrt(-1)...

`1,1+I,2i,-2+2i,"…."i= sqrt(-1)`

Text Solution

Verified by Experts

Here, `a=1`
and `r=(1+i)/(1)=(2i)/(1+i)=(-2+2i)/(2i)="..."`
`=(1+i)=(2i(1+i))/((1+i)(1+i))=((-1+i)i)/(i)^(2)="..."`
`=(1+i)=(1+i)=(1+i)="..."`
`i.e.,a=1,r=1+i`
Imaginary GP `(r= " imaginary ")`
Promotional Banner

Similar Questions

Explore conceptually related problems

If one root of the quadratic equation ix^2-2(i+1)x +(2-i)=0,i =sqrt(-1) is 2-i , the other root is

If z_(1)=2+5i,z_(2)=3-i,where" "i=sqrt(-1), find (i)b Z_(1)*Z_(2) (ii) Z_(1)xxZ_(2) (iii) Z_(2)*Z_(1) (iv) Z_(2)xxZ_(1) (v) acute angle between Z_(1)andZ_(2) . (vi) projection of Z_(1)onZ_(2) .

If one root of the equation x^(2)-ix-(1+i)=0,(i=sqrt(-1)) is 1+i , find the other root.

If centre of a regular hexagon is at origin and one of the vertices on Argand diagram is 1+2i, where i=sqrt(-1) , then its perimeter is

If |{:(6i,-3i,1),(4,3i,-1),(20,3,i):}|=x+iy,i=sqrt(-1) then

Statement-1: 3+7i gt 2+4i, where i=sqrt(-1). Statement-2: 3 gt 2 and 7 gt 4

The value of the determinant |{:(sqrt(6),2i,3+sqrt(6)i),(sqrt(12),sqrt(3)+sqrt(8)i,3sqrt(2)+sqrt(6)i),(sqrt(18),sqrt(2)+sqrt(12)i,sqrt(27)+2i):}| is (where i= sqrt(-1)

If alpha and beta are the complex roots of the equation (1+i)x^(2)+(1-i)x-2i=0 where i=sqrt(-1) , the value of |alpha-beta|^(2) is

The real part of (1-i)^(-i), where i=sqrt(-1) is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is