Home
Class 12
MATHS
Find n, so that (a^(n+1)+b^(n+1))/(a^(n)...

Find n, so that `(a^(n+1)+b^(n+1))/(a^(n)+b^(n))(a ne b )` be HM beween a and b.

Text Solution

Verified by Experts

` therefore (a^(n+1)+b^(n+1))/(a^(n)+b^(n))=(2ab)/(a+b)`
` implies (b^(n+1)[((a)/(b))^(n+1)+1])/(b^(n)[b^(n)((a)/(b)+1)])=((b)^(2)[2((a)/(b))])/(b((a)/(b)+1))`
` implies (((a)/(b))^(n+1)+1)/(((a)/(b))^(n)+1)=(2((a)/(b)))/(((a)/(b))+1)`
Let `(a)/(b)=lambda`
Then, ` (lambda^(n+1)+1)/(lambda^(n)+1)=(2lambda)/(lambda+1)`
`implies (lambda+1)(lambda^(n+1)+1)=(2lambda)(lambda^(n)+1)`
`implies lambda^(n+2)+lambda+lambda^(n+1)+1 =2lambda^(n+1)+2lambda`
`implies lambda^(n+2)-lambda^(n+1)-lambda+1 =0`
`implies lambda^(n+1)(lambda-1)-1(-1)=0`
`implies(lambda-1) (lambda^(n+1)-1)=0`
`implies lambda-1ne 0 " " [therefore ane b]`
`therefore lambda^(n+1)-1=0`
`implies lambda^(n+1)=1=lambda^(0)`
`implies n+1=0" or "n=-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of n so that (a^(n+1)+b^(n+1))/(a^(n)+b^n) may be the geometric mean between a and b.

Find the value of n so that (a^(n+1)+b^(n+1))/(a^n+b^n) may be the geometric mean between a and b.

If (a^(n)+b^n)/ (a^(n-1) +b^(n-1)) is the A.M. between a and b, then find the value of n.

Find n, ""^(n+5)P_(n+1)=(11)/(2)(n-1)*""^(n+3)P_(n).

Find n, ""^(n+5)P_(n+1)=(11)/(2)(n-1)*""^(n+3)P_(n).

The value of lim_(nto oo)(a^(n)+b^(n))/(a^(n)-b^(n)), (where agtbgt1 is

If a, b, c, d are in G.P, prove that (a^n + b^n), (b^n + c^n), (c^n + d^n) are in G.P.

Prove that ((log)_a N)/((log)_(a b)N)=1+(log)_a b

A=[{:(a,b),(0,1):}],ane1 then prove that A^(n)=[{:(a^(n),(b(a^(n)-1))/(a-1)),(0," "1):}], n inN .