Home
Class 12
MATHS
If a,b,c,d be four distinct positive qua...

If `a,b,c,d` be four distinct positive quantities in AP, then
(a) `bcgtad`
(b) ` c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))`

Text Solution

Verified by Experts

`therefore a,b,c,d` are in GP.
(a) Applying AMgtGM
For first three members,
`(a+c)/(2)gtb`
`implies a+cgt2b " " "….(v)"`
For last three members, `(b+d)/(2)gtc`
`implies b+dgt2c " " "…..(vi)"`
From Eqs. (v) and (vi), we get
`a+c+b+dgt2b+2c " or " a+dgtb+c`
(b) Applying GMgt HM
For first three members, `bgt(2ac)/(a+c)`
`implies ab+bcgt 2ac " " "....(vii)"`
For last three members, `cgt(2bd)/(b+d)`
`implies bc+cdgt2bd " " "....(viii)"`
From Eqs. (vii) and (viii), we get
`ab+bc+bc+cdgt2ac+2bd`
or `ab+cdgt 2(ac+bd-bc)`
Dividing in each term by `abcd`, we get
` c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Two different non parallel lines cut the circle |z|=r at points a;b;c;d respectively . prove that these lines meet at a point z=(a^(-1)+b^(-1)-c^(-1)-d^(-1))/(a^(-1)b^(-1)-c^(-1)d^(-1))

If a, b, c, d are distinct integers in A. P. Such that d=a^2+b^2+c^2 , then a + b + c + d is

(x^(1/(a-b)))^(1/(a-c))xx(x^(1/(b-c)))^(1/(b-a))xx(x^(1/(c-a)))^(1/(c-b))

If a,b,c and d are four positive real numbers such that abcd=1 , what is the minimum value of (1+a)(1+b)(1+c)(1+d) .

Prove that : cot^(-1)((1+ab)/(a-b))+cot^(-1)((1+bc)/(b-c))+cot^(-1)((1+ca)/(c-a))=pi,(a>b>c>0)

Prove the followings : "cot"^(-1)(ab+1)/(a-b)+"cot"^(-1)(bc+1)/(b-c)+"cos"^(-1)(ca+1)/(c-a)=pi(agtbgtc)

If a,b,c are in geometric progression then ((1)/(b)+ (1)/(c )-(1)/(a)) ((1)/(c ) + (1)/(a) - (1)/(b)) = ……..

If a ,\ b ,\ c >0\ a n d\ x ,\ y ,\ z in R , then the determinant |\ \ (a^x+a^x)^2(a^x-a^(-x))^2 1(b^y+b^(-y))^2(b^y-b^(-y))^2 1(c^z+c^(-z))^2(c^z-c^(-z))^2 1| is equal to- a. a^x b^y c^x b. a^(-x)b^(-y)c^(-z)\ c. a^(2x)b^(2y)c^(2x) d. zero

Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a', b', c', respectively from the origin, then prove that (1)/(a^2)+(1)/(b^2)+(1)/(c^2)=(1)/((a')^2)+(1)/((b')^2)+(1)/((c')^2) .

Match the following list of animals with their level of organisation. (A) (a - 2), (b - 3), (C-4), (d - 1) (B) (a - 2), (b - 4), (C-3), (d - 1) (C) (a - 4), (b - 1), (C-2), (d - 3) (D) (a - 1), (b - 4), (C-3), (d - 2)