Home
Class 12
MATHS
If sum(r=1)^(n)T(r)=(n(n+1)(n+2)(n+3))/...

If ` sum_(r=1)^(n)T_(r)=(n(n+1)(n+2)(n+3))/(12)` where `T_(r)` denotes the rth term of the series. Find ` lim_(nto oo) sum_(r=1)^(n)(1)/(T_(r))`.

Text Solution

Verified by Experts

We, have, `T_(n)=sum_(r=1)^(n)T_(r)-sum_(r=1)^(n-1)T_(r)`
`=(n(n+1)(n+2)(n+3))/(12)-((n-1)n(n+1)(n+2))/(12)`
`=(n(n+1)(n+2))/(12)[(n+3)-(n-1)]`
`=(n(n+1)(n+2))/(3)(1)/(T_(n))=(3)/(n(n+1)(n-2))`
`:.underset(nto oo)(lim)sum_(r=1)^(n)(1)/(T_(r))=underset(nto oo)(lim)sum_(r=1)^(n)(3)/(r(r+1)(r+2))`
`=3underset(nto oo)(lim)sum_(r=1)^(n)(1)/(r(r+1)(r+2))`
`=3underset(nto oo)(lim)((1)/(1*2*3)+(1)/(2*3*4)+(1)/(3*4*5)+"...."+(1)/(n(+1)(n+2)))`
Maha Shortcut Method
`=3underset(nto oo2)(lim)(1)/(2)((1)/(1*2)-(1)/(n(n+1)(n+2)))`
`(3)/(2)((1)/(2)-0)=(3)/(4)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^n(2r+1)=...... .

Definite integration as the limit of a sum : lim_(ntooo)sum_(r=1)^(n)(1)/(n)e^(r/(n))=.............

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

Definite integration as the limit of a sum : lim_(ntooo)(1)/(n)sum_(r=n+1)^(2n)log(1+(r)/(n))=.............

Evaluate sum_(r=1)^(n)rxxr!

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

If in an AP, S_(n)= q n^(2) and S_(m)= qm^(2) , where S_(r ) denotes the sum of r terms of the AP, then S_(q) equals to,

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Find the sum to n terms of the series in whose n^(th) terms is given by n(n+1)(n+4)