Home
Class 12
MATHS
If a + b = 1, a gt 0,b gt 0, prove that ...

If a + b = 1, a `gt` 0,b `gt` 0, prove that `(a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)`

Text Solution

Verified by Experts

Since, AM of 2nd powers gt 2nd power of AM
`:. ((a+(1)/(a))^(2)+(b+(1)/(b))^(2))/(2)gt((a+(1)/(a)+b+(1)/(b))/(2))^(2)`
`= (1)/(4)(a+b+a^(-1)+b^(-1))^(2)=(1)/(4)(1+a^(-1)+b^(-1))^(2) " "[:. a+b=1]`
`:.(a+(1)/(a))^(2)+(b+(1)/(b))^(2)gt(1)/(2)(1+a^(-1)+b^(-1))^(2)" " "......(i)"`
Again, `(a^(-1)+b^(-1))/(2)gt((a+b)/(2))^(-1)=((1)/(2))^(-1)=2`
or `(a^(-1)+b^(-1))/(2)gt2`
`implies a^(-1)+b^(-1)gt4`
`:. (1+ a^(-1)+b^(-1))gt5 " or " (1+ a^(-1)+b^(-1))^(2)gt25`
` implies (1)/(2) (1+ a^(-1)+b^(-1))^(2)gt(25)/(2) " " ".....(ii)"`
From Eqs. (i) and (ii), we get
` (a+(1)/(a))^(2)+(b+(1)/(b))^(2)gt(25)/(2)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x-a)^(2) + (y-b)^(2) = c^(2) , for some c gt 0 , prove that ([1 + ((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

If the points A(x,y), B(a,0) and C(0,b) are collinear, prove that (x)/(a) + (y)/(b) = 1

If y= a sin x + b cos x then, y^(2) + (y_(1))^(2) = ……. (a^(2) + b^(2) ne 0)

|a| lt 1 and |b| lt 1, x=1 + a + a^(2) + ……. and y=1 + b + b^(2) + …..,Prove that, 1 + ab + a^(2) b^(2) + ….= (xy)/(x+y-1)

If a^2+b^2=23 a b , then prove that log((a+b))/5=1/2(loga+logb)dot

If a^(2) + 2bc, b^(2) + 2ac, c^(2) + 2ab are in A.P then prove that (1)/(b-c), (1)/(c-a) and (1)/(a-b) are in A.P.

Find the area of the ellipse (x^2 )/(a^2) + (y^2)/(b^2)=1 (a gt b) .